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Spin interactions and switching in vertically tunnel-coupled quantum dots

Guido Burkard,* Georg Seelig, and Daniel Loss†

Department of Physics and Astronomy, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
~Received 7 October 1999!

We determine the spin-exchange couplingJ between two electrons located in two vertically tunnel-coupled
quantum dots, and its variation when magnetic~B! and electric~E! fields ~both in-plane and perpendicular! are
applied. We predict a strong decrease ofJ as the in-planeB field is increased, mainly due to orbital compres-
sion. Combined with the Zeeman splitting, this leads to a singlet-triplet crossing, which can be observed as a
pronounced jump in the magnetization at in-plane fields of a few T, and perpendicular fields of the order of 10
T for typical self-assembled dots. We use harmonic potentials to model the confining of electrons, and calcu-
late the exchangeJ using the Heitler-London and Hund-Mulliken techniques, including the long-range Cou-
lomb interaction. With our results we provide experimental criteria for the distinction of singlet and triplet
states, and therefore for microscopic spin measurements. In the case where dots of different sizes are coupled,
we present a simple method to switch the spin coupling on and off with exponential sensitivity using an
in-plane electric field. Switching the spin coupling is essential for quantum computation using electronic spins
as qubits.
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I. INTRODUCTION

Several methods to manipulate electronic spin in nan
cale semiconductor devices are being developed or are
ready available.1 Perhaps even more challenging is the p
posal to use the electron spin in quantum dots as the b
information carrier~the qubit! in a quantum computer.2 The
recently measured long decoherence times in semicondu
heterostructures3 and quantum dots4 are encouraging for the
further research of solid-state quantum computation. Qu
tum logic gates between these qubits are effected by all
ing the electrons to tunnel between two coupled quan
dots, thereby creating an effective spin-spin interacti
There is a large interest in quantum computation due to
potential of solving some classically intractable problem
such as factoring,5 and speeding up the solution of oth
important problems, e.g., database search.6 For the applica-
tion of coupled quantum dots as a quantum gate, it is imp
tant that the coupling between the spins can be switched
and off via externally controlled parameters such as g
voltages and magnetic fields. In a recent publication,7 we
calculated the spin interaction for two laterally coupled a
identical semiconductor quantum dots defined in a tw
dimensional electron system~2DES! as a function of these
external parameters, and found that the interactionJ can be
switched on and off with exponential sensitivity by changi
the voltage of a gate located in between the coupled dots
by applying a homogeneous magnetic field perpendicula
the 2DES. In this paper, we consider a different setup c
sisting of twovertically coupled quantum dots with magnet
as well as electric fields applied in the planeandperpendicu-
lar to the plane of the substrate~see Fig. 1!. We also extend
our previous analysis to coupled quantum dots ofdifferent
sizes, which has important consequences for switching
spin interaction: When a small dot is coupled to a large o
the exchange coupling can be switched on and off with
ponential sensitivity using an in-plane electric fieldEi .

Semiconductor quantum dots are small engineered st
PRB 620163-1829/2000/62~4!/2581~12!/$15.00
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tures which can host a single electron or a few electrons
three-dimensionally confined region. Various techniques
manufacturing quantum dots, and methods for probing th
physical properties~such as electronic spectra and condu
tance!, are known.8–10 In lithographically defined quantum
dots, the confinement is obtained by electrical gating app
to a 2DES in a semiconductor heterostructure, e.g.,
Al xGa12xAs/GaAs. In vertical dots, a columnar mesa stru
ture is produced by etching a semiconduc
heterostructure.11 While laterally coupled quantum dots hav
been defined in 2DES’s by tunable electric gates,12–15 verti-
cally coupled dots have been manufactured either by etch
a mesa structure out of a triple-barrier heterostructure
subsequently placing an electrical side-gate around it,16 or by
using stacked double-layer self-assembled dots~SAD’s!.17,18

In the mesa structure, the number of electrons per dot ca
varied one by one starting from zero, whereas in SAD’s
average number of electrons per dot in a sample with m
dots can be controlled, even one electron per dot is exp
mentally feasible.19

Self-assembled quantum dots are manufactured in the

FIG. 1. ~a! Sketch of the vertically coupled double quantum-d
system. The two dots may have different lateral diametersaB1 and
aB2 . We consider magnetic and electric fields applied either
plane (Bi , Ei) or perpendicularly (B' , E'). ~b! The model poten-
tial for the vertical confinement is a double well, which is obtain
by combining two harmonic wells atz56a.
2581 ©2000 The American Physical Society
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called Stranski-Krastanov growth mode, where a latti
mismatched semiconducting material is epitaxially grown
a substrate, e.g., InAs on GaAs.20 Minimization of the lattice
mismatch strain occurs through the formation of small thr
dimensional islands. Repeating the fabrication procedure
scribed above, a second layer of quantum dots can be for
on top of the first one. Since the strain field of a dot in t
first layer acts as a nucleus for the growth of a dot in
second layer, the quantum dots in the two layers are stro
spatially correlated.21 Electrostatic coupling in vertical SAD
has been investigated,18 and it can be expected that the pr
duction of tunnel-coupled SADs will be possible in the ne
future.

In this paper, we concentrate on the magnetic proper
~including in-plane fieldsBi) of pairs of quantum dots in
which two electrons are vertically coupled via quantum tu
neling and are subject to the full Coulomb interaction~see
Fig. 1 for a sketch of the system under study!. Coupled quan-
tum dots in the absence of quantum tunneling~purely elec-
trostatic interactions! were studied in Refs. 22–24. Elec
tronic spectra and charge densities for two electrons i
system of vertically tunnel-coupled quantum dots at z
magnetic field were calculated in Ref. 25. Singlet-trip
crossings in the ground state of single26 and coupled dots
with two27 to four28,29 electrons in vertically coupled dots i
the presence of a magnetic field perpendicular to the gro
direction (Bi in Fig. 1! have been predicted.

In contrast to previous theoretical work on coupl
dots,22–29the investigation presented here both takes into
count quantum tunneling and includesin-plane magnetic
fields (Bi in Fig. 1!, leading to a much stronger suppressi
of the exchange energy than forB' ~for very weakly con-
fined dots, in-planeB fields can cause a singlet-triplet cros
ing, even in the absence of the Zeeman coupling!. This result
is in analogy with our earlier finding of a spin singlet-tripl
crossing in laterally coupled identical dots as the perpend
lar field is increased.7 In addition to this, we investigate th
influence of an electric fieldE' applied in the growth direc-
tion on low-energy electronic levels in vertically couple
quantum dots. From the electronic spectrum, we derive
equilibrium magnetization as a function of both the magne
and electric fields~magnetization measurements for man
electron double quantum dots were reported in Ref. 30!. As
another important extension of earlier work, we conside
small dot which is tunnel coupled to a large dot. We find th
this system represents an ideal candidate for a quantum
since the exchange interactionJ can be switched simply by
applying an in-plane electric fieldEi ~see Sec. V!.

Our main interest is in the dynamics of the spins of t
two electrons which are confined in the double dot. The s
dynamics can be described by an isotropic Heisenberg in
action

Hs5JS1•S2 , ~1!

where the exchange energyJ is the difference of the energie
of the two-particle ground state, a spin singlet at zero m
netic field, and the lowest spin-triplet state. We shall cal
late the exchange energyJ(B,E,a) of two vertically coupled
quantum dots containing one electron each as a functio
electric and magnetic fields (E andB) and the interdot dis-
tance 2a. We show that an in-plane magnetic field has
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much stronger influence on the spin coupling than a perp
dicular magnetic field. Moreover, we will discuss the infl
ence of the dot size onJ, and investigate systems containin
two dots of different sizes. We will see that it is possible
suppress the spin-spin coupling exponentially by means
an in-plane magnetic fieldBi for large dots~weak confine-
ment! or, alternatively, with an in-plane electric fieldEi if
one of the dots is larger than the other. Furthermore we
point out differences and similarities in the field dependen
of the tunnel splittingt found in a quantum mechanicall
coupled double-dot system containing only a single elect
and the exchange energyJ, a quantity due to two-particle
correlations. Performing these calculations, we make us
methods known from molecular physics~Heitler-London and
Hund-Mulliken technique!, thus exploiting the analogy be
tween quantum dots and atoms. Note again that besides
ing interesting in its own right, a quantum-dot ‘‘hydroge
molecule,’’ if experimentally controllable, could be used as
fundamental part of a solid-state quantum-comput
device,2,7 using the electronic spin as the qubit.

In our discussion of the vertically coupled double-dot sy
tem we proceed as follows. In Sec. II we introduce a mo
for a description of a vertical double-dot structure. Sub
quently ~Sec. III!, we discuss vertically coupled quantu
dots in perpendicular magnetic and electric fields. Section
is devoted to the discussion of a double-dot structure in
presence of an in-plane magnetic field. In Sec. V we pres
a simple switching mechanism for the spin coupling invo
ing an in-plane electric field. Finally, we discuss the imp
cations of our result for two-spin and single-spin measu
ments in Sec. VI.

II. MODEL

The Hamiltonian which we use for the description of tw
vertically coupled quantum dots is

H5 (
i 51,2

h~r i ,pi !1C,

h~r ,p!5
1

2m S p2
e

c
A~r ! D 2

1ezE1Vl~r !1Vv~r !, ~2!

C5
e2

kur12r2u
,

whereC is the Coulomb interaction andh the single-particle
Hamiltonian. The dielectric constantk and the effective
massm are material parameters. The potentialVl in h de-
scribes the lateral confinement, whereasVv models the ver-
tical double-well structure. For the lateral confinement
choose the parabolic potential

Vl~x,y!5
m

2
vz

2H a01
2 ~x21y2!, z.0

a02
2 ~x21y2!, z,0,

~3!

where we have introduced the anisotropy parametersa06

determining the strength of the vertical relative to the late
confinement. Note that for dots of different size (a01

Þa02) the model potential@Eq. ~3!# is not continuous atz
50. The lateral effective Bohr radiiaB65A\/(mvza06 are
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a measure for the lateral extension of the electron wave fu
tion in the dots. In experiments with electrically gated qua
tum dots in a two-dimensional electron system, it has b
shown that the electronic spectrum is well described b
simple harmonic oscillator.9,10 In the presence of a magnet
field B' perpendicular to the 2DES, the one-particle probl
has Fock-Darwin states32 as an exact solution. Furthermor
it has been shown experimentally19 and theoretically31 that a
two-dimensional harmonic confinement potential is a reas
able approximation to the real confinement potential in
lens-shaped SAD. In describing the confinementVv along
the interdot axis, we have used a~locally harmonic! double-
well potential of the form@see Fig. 1~b!#

Vv5
mvz

2

8a2
~z22a2!2, ~4!

which, in the limit of large interdot distancea@aB , sepa-
rates~for z'6a) into two harmonic wells~one for each dot!
of frequencyvz . Here a is half the distance between th
centers of the dots andaB5A\/(mvz) is the vertical effec-
tive Bohr radius. For most vertically coupled dots, the ve
cal confinement is determined by the conduction-band of
between different semiconductor layers; therefore, in p
ciple, a square-well potential would be a more accurate
scription of the real potential than the harmonic double w
~note however, that the required conduction-band offsets
not always known exactly!. There is no qualitative differenc
between the results presented below obtained with harm
potentials and the corresponding results which we obtai
using square-well potentials.33

It was shown in Refs. 7 and 34 that the spin-orbit con
bution ~due to the confinement! Hso5(vz

2/2mec
2)S•L , with

me being the bare electron mass, can be neglected in
relevant cases, e.g.,Hso/\vz;1027 for \vz530 meV in
GaAs.

The Zeeman splittingHZ5gmB( i 51,2B•Si is not included
in the two-particle Hamiltonian@Eq. ~2!#, since in the ab-
sence of spin-orbit coupling one can treat the orbital prob
separately and include the Zeeman interaction later~which
we will do when we study the low-energy spectra and
magnetization!. Here we have denoted the effectiveg factor
by g and the Bohr magneton bymB .

III. PERPENDICULAR MAGNETIC FIELD B�

We first study the vertically coupled double dot in a pe
pendicular magnetic fieldB5B' ~cf. Fig. 1! which corre-
sponds to the vector potentialA(r )5B(2y,x,0)/2 in the
symmetric gauge~for the time being, we setE50).

The confining potentials for the two electrons are given
Eqs.~3! and ~4!. As a starting point for our calculations w
consider the problem of an electron in a single quantum
The one-particle Hamiltonian by which we describe a sin
electron in the upper~lower! dot of the double-dot system i

h6a
0 ~r !5

1

2m S p2
e

c
A~r ! D 2

1
mvz

2

2
@a06

2 ~x21y2!

1~z7a!2#, ~5!

and has the ground-state Fock-Darwin32 solution
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w6a~x,y,z!5S mvz

p\ D 3/4

Aa6e2mvz[a6(x21y2)1(z7a)2]/2\,

~6!

corresponding to the ground-state energye65\vz(1
12a6)/2. In Eq. ~6! we have introduced a6(B)
5Aa06

2 1vL(B)2/vz
25Aa06

2 1B2/B0
2, with vL(B)

5eB/2mc the Larmor frequency andB052mcvz /e the
magnetic field for whichvz5vL . The parametersa6(B)
describe the compression of the one-particle wave func
perpendicular to the magnetic field. For finding the exchan
energyJ we make the Heitler-London ansatz, using the sy
metric and antisymmetric two-particle wave-functio
uC6&5(u12&6u21&)/A2(16S2), where we use the one
particle orbitalsw2a(r )5^r u1& and w1a(r )5^r u2&. Here
u i j &5u i &u j & are two-particle product states, andS
5*d3rw1a* (r )w2a(r )5^2u1& denotes the overlap of th
right and left orbitals. A nonvanishing overlapS implies that
the electrons can tunnel between the dots. Using the t
particle orbitalsuC6& we can calculate the singlet and tripl
energy es/t5^C6uHuC6&, and therefore the exchange e
ergy J5e t2es . We rewrite the Hamiltonian, adding an
subtracting the potential of the single upper~lower! dot for
electron 1 ~2! in H, as H5h2a

0 (r1)1h1a
0 (r2)1W1C,

which is convenient because it contains the single-part
Hamiltoniansh1a

0 andh2a
0 of which we know the exact so

lutions. The potential term isW(r1 ,r2)5Wl(x1 ,y1 ,x2 ,y2)
1Wv(z1 ,z2), where

Wl~x1 ,y1 ,x2 ,y2!5 (
i 51,2

Vl~xi ,yi !2
mvz

2

2
@a02

2 ~x1
21y1

2!

1a01
2 ~x2

21y2
2!#, ~7!

Wv~z1 ,z2!5 (
i 51,2

Vv~zi !2
mvz

2

2
@~z11a!21~z22a!2#.

~8!

The formal expression forJ is now

J5
2S2

12S4 S ^12uC1Wu12&2
Rê 12uC1Wu21&

S2 D . ~9!

Evaluating the matrix elementŝ12uC1Wu12& and ^12uC
1Wu21&, we obtain

J5
2S2

12S4
\vzH cAme2md2

@12erf~dA2m!#

2
c

p

a11a2

A12~a11a221!2
arccos~a11a221!

1
1

4
~a01

2 2a02
2 !S a12a2

a1a2
D @12erf~d!#1

3

4
~11d2!J ,

~10!

where erf(x) denotes the error function. We have introduc
the dimensionless parametersd5a/aB for the interdot dis-
tance, andc5Ap/2(e2/kaB)/\vz for the Coulomb interac-
tion. Note thata6 , m52a1a2 /(a11a2), and the overlap
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S52
Aa1a2

a11a2
exp~2d2!, ~11!

depend on the magnetic fieldB. The first term in the square
brackets in Eq.~10! is an approximate evaluation of the d
rect Coulomb integral̂ 12uCu12& for d*0.7 and for mag-
netic fields B&B0.35 The second term in Eq.~10! is the
~exact! exchange Coulomb integral^12uCu21&/S2, while the
last two terms stem from the potential integrals, which w
also evaluated exactly. If the two dots have the same size
expression for the exchange energy@Eq. ~10!# can be simpli-
fied considerably. We will first study the case of two dots
equal size, and later come back to the case of dots w
differ in size.

Settinga015a02[a0 in Eq. ~10!, and using Eq.~11!,
we obtain

J5
\vz

sinh~2d2!
FcAae2ad2

@12erf~dA2a!#

2
c

p

2a

A12~2a21!2
arccos~2a21!1

3

4
~11d2!G ,

~12!

wherea5Aa0
21B2/B0

2. As before, the first term in Eq.~12!
is the direct Coulomb term, while the second term~appearing
with a negative sign! is the exchange Coulomb term. Finall
the potential term in this case equalsW5(3/4)(11d2), and
is due to the vertical confinement only. For two dots of eq
size neither the prefactor 2S2/(12S4) nor the potential term
depends on the magnetic field. Since the direct Coulo
term depends onB' only weakly, the field dependence of th
exchange energy is mostly determined by the exchange C
lomb term.

Note that for obtaining the large-field asymptotics (B
*B0), it would be necessary to include hybridized on
particle wave functions,7 since in the magnetic field the leve
spacings between the one-particle ground states are shrin
and eventually become smaller thanJ, thus undermining the
self-consistency of the one-orbital Heitler-London appro
mation. Increasing the interdot distanced ~for a fixed con-
finement\v), an exponential decrease of the exchange
ergyJ is predicted by Eqs.~10! and~12!. As mentioned, Eq.
~10! is an approximation and should not be used for sm
interdot distancesd&0.7. There are also some limitations o
the choice of the anisotropy parametersa06 . If we consider
a system with much stronger vertical than lateral confi
ment ~e.g., a0651/10), the exchange energy will becom
larger than the smallest excitation energyDe5a06\vz in
the single-dot spectrum. In that case we have to improve
Heitler-London approach by including hybridized single-d
orbitals.7 If, on the other hand, the two dots are different
size, a double occupation of the larger dot is energetic
favorable, and a Hund-Mulliken approach should be e
ployed. In the Hund-Mulliken approximation, the Hilbe
space for the spin singlet is enlarged by including tw
particle states describing a double occupation of a quan
dot. Since only the singlet sector is enlarged it can be
pected that we obtain a lower singlet energyes than from the
e
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Heitler-London calculation~but the same triplet energye t),
and that thereforeJ5e t2es will be larger than the Heitler-
London result@Eq. ~10!#.

We now apply the Hund-Mulliken approach to calcula
the exchange energy of the double-dot system. We there
introduce the orthonormalized one-particle wave functio
F6a5(w6a2gw7a)/A122Sg1g2, where g5(1
2A12S2)/S. UsingF6a , we generate four basis function
with respect to which we diagonalize the two-particle Ham
tonian H: States with double occupation,C6a

d (r1 ,r2)
5F6a(r1)F6a(r2), and states with single occupatio
C6

s (r1 ,r2)5@F1a(r1)F2a(r2)6F2a(r1)F1a(r2)#/A2.
Calculating the matrix elements of the HamiltonianH in this
orthonormal basis, we find

H5S 2e1V1 2A2tH1 2A2tH2 0

2A2tH1 2e11U1 X 0

2A2tH2 X 2e21U2 0

0 0 0 2e1V2

D ,

~13!

where

e65^F6auh~z7a!uF6a&, e5
1

2
~e11e2!, ~14!

tH65t2w652^F6auhuF7a&2
1

A2
^C1

s uCuC6a
d &,

~15!

V65^C6
s uCuC6

s &, U65^C6a
d uCuC6a

d &, ~16!

X5^C6a
d uCuC7a

d &. ~17!

The general form of the entries of the matrix@Eq. ~13!# are
given in Appendix A. The evaluation for perpendicular ma
netic fields B' can be found in Appendix B. We do no
display the eigenvalues of the matrix@Eq. ~13!# here, since
the expressions are lengthy. However, if the two dots h
the same size (a025a01), then the Hamiltonian consider
ably simplifies sincetH25tH1[tH , e15e2[e, and U1

5U2[U. In this case the eigenvalues arees652e1UH/2
1V16AUH

2 /414tH
2 and es052e1UH22X1V1 for the

three singlets, ande t52e1V2 for the triplet, where we have
introduced the additional quantityUH5U2V11X. The ex-
change energy is the difference between the lowest sin
and the triplet state,J5e t2es25V2UH/21AUH

2 116tH
2 /2,

where we have usedV5V22V1 . The singlet energieses1

andes0 are separated frome t andes2 by a gap of orderUH
and are therefore negligible for the study of low-ener
properties. If only short-range Coulomb interactions are c
sidered~which is usually done in the standard Hubbard a
proach! the exchange energy J reduces to
2U/21AU2116t2/2, wheret andU denote the hopping ma
trix element and on-site repulsion which are not renorm
ized by interaction. We call the quantitiestH and UH the
extendedhopping matrix element andextendedon-site repul-
sion, respectively, since they are renormalized by long-ra
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Coulomb interactions. If the Hubbard ratiotH /UH is &1, we
are in the Hubbard limit, whereJ approximately takes the
form ~cf. Ref. 7!

J5
4tH

2

UH
1V. ~18!

The first term in Eq.~18! has the form of the standard Hub
bard model result, whereas the second termV is due to the
long-range Coulomb interactions and accounts for the dif
ence in Coulomb energy between the singlet and triplet st
C6

s . We have evaluated our result for a GaAs (m
50.067me , k513.1) system comprising two equal do
with vertical confinement energy\vz516 meV (aB
517 nm) and horizontal confinement energya0\vz
58 meV in a distancea531 nm (d51.8). The result is
plotted in Fig. 2~left graph, box-shaped symbols!. The ex-
change energyJ(B') as obtained from the Hund-Mulliken
method for two coupled InAs SAD’s (m50.08me ,19 k
514.6, \vz550 meV,a015a0251/4) is plotted in Fig. 3
~left graph, box symbols!. Including the Zeeman splitting, w
can now plot the low-energy spectrum as a function of
magnetic field; see Fig. 4~left!. Note that the spectrum
clearly differs from the single-electron spectrum in t
double dot~Fig. 4, right!.

We now explain to what extent the Hund-Mulliken~HM!
results~which we use for our quantitative evaluations ofJ)
are more accurate than the results obtained from the Hei
London~HL! method~which are more simple and which w
used mostly for qualitative arguments!. The Hund-Mulliken
method improves on the Heitler-London method by tak
into account double-electron occupancy of the quantum d
The Hubbard ratiotH /UH can be considered a measure f
the relative importance of double occupancy. Increasing
confinement\vz at constantd ~leading to potential wells

FIG. 2. Left graph: Exchange energyJ as a function of the
magnetic fieldB applied vertically to thexy plane (B' , box sym-
bols! and in-plane (Bi , circle symbols!, as calculated using the
Hund-Mulliken method. Note that due to vertical orbital compre
sion, the exchange coupling decreases much more strongly fo
in-plane magnetic field. The parameters for this plot correspond
system of two equal GaAs dots, each 17 nm high and 24 nm
diameter~vertical confinement energy\vz516 meV and anisot-
ropy parametera051/2). The dots are located at a center-to-cen
distance of 2a531 nm (d51.8). The single-orbital approximatio
breaks down at aboutB0'9 T, where it is expected that level
which are higher in the zero-field (B50) spectrum determine th
exchange energy. Right graph: single-particle tunneling amplitut
vs magnetic field for the same system. Note that in contrast to
exchange coupling~a genuine two-particle quantity!, t describes the
tunneling of asingleparticle. WhereasJ shows a weak dependenc
on the vertical magnetic fieldB' , we note thatt(B') ~box-shaped
symbols! is constant.
r-
es

e

r-

ts.

e

that are deeper but closer together, sincea5daB

5dA\/mvz), we observe an increase in the discrepancy
tweenJHM andJHL at zero magnetic field. Because the tu
neling matrix elementt is proportional to\vz and the on-site
repulsionU is proportional to the Coulomb energye2/kaB

}A\vz, the Hubbard ratiotH /UH increases asA\vz if the
confinement is increased at constant distance; thus do
occupancy becomes more important, explaining the incre
ing difference betweenJHM and JHL . Both increasing the
interdot distance 2a and the confinement\vz lead to a larger

-
an
a

in

r

e

FIG. 3. Exchange energyJ ~left graph! and single-electron tun-
neling amplitudet ~right graph! as a function of the applied mag
netic field for two vertically coupled small~height 6 nm, width
12 nm) InAs (m50.08me , k514.6) quantum dots~e.g., self-
assembled dots! in a center-to-center distance of 9 nm (d51.5).
The box-shaped symbols correspond to the magnetic fieldB' ap-
plied in thez direction, and the circle symbols to the fieldBi in the
x direction. The plotted results were obtained using the Hu
Mulliken method, and are reliable up to a fieldB0'15 T, where
higher levels start to become important.

FIG. 4. Field dependence of the lowest four electronic levels
two vertically coupled InAs dots~parameters as in Fig. 3!, including
the Zeeman coupling withg factorgInAs5215. Left graphs@~a! and
~b!#: Spectrum for a two-electron system involving the Zeema
split spin-triplet states~box, circle, and triangle symbols!, and the
spin-singlet ~diamond symbols!. The exchange energyJ corre-
sponds to the gap between the singlet and the middle (mz50, box-
shaped symbols! triplet energies. Under the influence of an in-pla
field Bix ~a!, the ground state changes from a singlet to a triple
about 9 T, whereas in a perpendicular fieldB'x ~b! the singlet-
triplet crossing occurs at a higher field, about 12.5 T. Right gra
@~c! and ~d!#; single-particle spectra, again plotted as a function
Bi ~c! andB' ~d!. Note that single-particle and two-particle spect
are clearly distinguishable. In particular, there is no ground-s
crossing for a single electron. TheB field dependence of the spec
trum of the large GaAs dots~cf. Fig. 2! is similar, with a much
smaller Zeeman splitting (gGaAs520.44). The plots are reliable up
to a fieldB0'15 T, where higher levels start to become importa
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value ofd5a/aB , and thus to a higher tunneling barrier.
strong decrease of the exchange energyJ with increasingd is
observed in both the result calculated according to
Heitler-London and Hund-Mulliken approaches.

We now turn to the dependence of the exchange enerJ
on an electric fieldE' applied in parallel to the magneti
field, i.e., perpendicular to thexy plane. Using the Heitler-
London approach we find the result

J~B,E'!5J~B,0!1\vz

2S2

12S4

3

2 S E'

E0
D 2

, ~19!

whereE05mvz
2/eaB . The growth ofJ is thus proportional

to the square of the electric fieldE' , if the field is not too
large ~see below!. This result is supported by a Hund
Mulliken calculation, yielding the same field dependence
small electric fields, whereas ifeE'a is larger thanUH ,
double occupancy must be taken into account. The elec
field causes the exchangeJ at a constant magnetic fieldB to
cross through zero fromJ(E50,B),0 to J.0. This effect
is signalled by a change in the magnetizationM; see Fig. 8.

In the presence of an electric fieldE' , the ground-state
energy of an electron in the dot atz56a is e6(E,B)
5\vz@112a6(B)2(E/E0)262dE/E0#/2. The shift of the
ground-state energies for the upper (e1) and lower (e2) dot
due to an electric field can be used to align the ground-s
energy levels of two dots of different size~only for two dots
of equal size, the energy levels are aligned at zero field!. This
is important because level alignment is necessary for co
ent tunneling and thus for the existence of the two-part
singlet and triplet states. The parameterEa denotes the elec
tric field at which the one-particle ground states are align
e1(B,Ea)5e2(B,Ea) ~for dots of equal size,Ea50). Inves-
tigating the dependence ofJ on E' , one has to be aware o
the fact that coherent tunneling is suppressed as the ele
field is increased, since the single-particle levels are detu
~note, however, that the suppression is not exponential!. This
level detuning limits the range of application of Eq.~19!,
which is only valid for small level misalignment, 2e(E'

2Ea)a,J(0,0), whereJ(0,0) is the exchange at zero fiel
Assuming gates at 20 nm below the lower and at 20
above the upper dot in the system discussed abovea
'31 nm, \vz516 meV, and a051/2), we find that
2aE'e5J(0,0)'0.7 meV at a gate voltage of aboutU
'1.6 mV. A further condition for the validity of Eq.~19! is
J(E'),\vza02 , (a02<a01). If this condition is not sat-
isfied, we have to use hybridized single-particle orbitals.
the parameters mentioned above, we findJ(E')5\vza02

58 meV at a gate voltageU'270 mV; therefore, this con
dition is automatically fulfilled if 2eE'a,J(0,0). The num-
bers used here are arbitrary but quite representative, as
cal exchange energies are on the order of a few meV
interdot distances usually range from a few nm to a few t
of nm.

In the case where one of the coupled quantum dot
larger than the other, there is a peculiar nonmonotonic
havior when a perpendicular fieldB' is applied atE50, see
Fig. 5. The wave-function compression due to the app
magnetic field has the effect of decreasing the size differe
of the two dots, thus making the overlap@Eq. ~11!# larger.
This growth of the overlap saturates when the electron o
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in the larger dot has shrunk approximately to the size of
orbital of the smaller dot, which happens at roughlyB01

52mcvza01 /e ~assuming thata01>a02).

IV. IN-PLANE MAGNETIC FIELD B i

In this section we consider two dots of equal size in
magnetic fieldBi which is applied along thex axis, i.e.,in
plane~see Fig. 1!. Since the two dots have the same size,
lateral confining potential@Eq. ~3!# reduces toV(x,y)
5mvz

2a0
2(x21y2)/2, where the parametera0 describes the

ratio between the lateral and the vertical confinement ene
The vertical double-dot structure is modeled using the pot
tial @Eq. ~4!#. The single-dot Hamiltonian is given by Eq.~5!,
with the vector potentialA(r )5B(0,2z,y)/2. The situation
for an in-plane field is a bit more complicated than for
perpendicular field, because the planar and vertical mo
do not separate. In order to find the ground-state wave fu
tion of the one-particle Hamiltonianh6a

0 , we have applied
the variational method~cf. Appendix D!, with the result

w6a~r !5S mvz

p\ D 3/4

~a0ab!1/4expF2
mvz

2\
~a0x21ay2

1b~z7a!2!6 i
ya

2l B
2G . ~20!

Note that this is not the exact single-dot ground state, exc
for spherical dots (a051). We have introduced the param
etersa(B)5Aa0

21(B/B0)2 and b(B)5A11(B/B0)2, de-
scribing the wave-function compression in they andz direc-
tions, respectively. The phase factor involving the magne
length l B5A\c/eB is due to the gauge transformationA6a
5B(0,2@z7a#,y)/2→A5B(0,2z,y)/2. The one-particle
ground-state energy amounts toe05\vz(a01a1b)/2.
From w6a we construct symmetric and antisymmetric tw
particle wave functionsC6 , exactly as forBiz. Care has to
be taken calculating the exchange energyJ; Eq. ~9! has to be

FIG. 5. Exchange energyJ as a function of the perpendicula
magnetic fieldBi for two vertically coupled GaAs quantum dots o
different sizes~both 25 nm high, the upper dot is 50 nm in diam
eter, and the lower dot is 100 nm in diameter;B01'2 T and d
51.5). HereJ is obtained using the Heitler-London method@Eq.
~10!#. The nonmonotonic behavior is due to the increase in
overlap@Eq. ~11!#, when the orbitals are magnetically compress
and therefore the size difference becomes smaller.
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modified, sincew6a is not an exact eigenstate of the Ham
tonianh6a

0 ~cf. Appendix D!. The correct expression forJ in
this case is

J~B,d!5J0~B,d!2\vz

4S2

12S4

b2a

a
d2S B

B0
D 2

, ~21!

whereJ0 denotes the expression from Eq.~9!. The variation
of the exchange energyJ as a function of the magnetic fiel
B is, through the prefactor 2S2/(12S4), determined by the
overlap S(B,d)5 exp@2d2

„b(B)1(B/B0)2
…/a(B)#, de-

pending exponentially on the in-plane field, while for a pe
pendicular field the overlap is independent of the field~for
two dots of equal size!; see Eq.~11!. We find that for weakly
confined dots (\vz&10 meV), there is a singlet-triple
crossing even without Zeeman interaction (J becoming
negative as in Ref. 7!; e.g., for\vz57 meV, a051/2, and
2a525 nm we find such a singlet-triplet crossing atB
'6 T. Here we concentrate on more strongly confined d
(\vz*10 meV), whereJ remains positive for arbitraryB.
Generally, the decay ofJ becomes flatter as the confineme
is increased. Improving on the Heitler-London result,
again performed a molecular-orbital~Hund-Mulliken! calcu-
lation of the exchange energy, which we plot in Fig. 2~left
graph, circle symbols!.

It is crucial in experiments to distinguish between sing
and two-electron effects in the double dot, e.g., for poten
quantum gate applications, where two electrons are requ
A single electron in a double dot exhibits a level splitting
2t, wheret denotes the single-particle tunneling matrix e
ment @cf. Eq. ~15!#, which has aB field dependence simila
to the exchange couplingJ. In order to allow a distinction
betweenJ and t, we have plottedt(B) in the right graph of
Figs. 2 and 3. Since the one-particle tunneling matrix e
ment t is strictly positive, it is clearly distinguishable from
the exchange energyJ in systems with singlet-triplet cross
ing. Experimentally, the number of electrons in the doub
dot system can be tested via the field-dependent spec
~Fig. 4! and magnetization~Figs. 6–8!.

V. ELECTRICAL SWITCHING
OF THE SPIN INTERACTION

Coupled quantum dots can potentially be used as quan
gates for quantum computation,2,7 where the electronic spin

FIG. 6. MagnetizationM ~in units of Bohr magnetons! as a
function of the B field for vertically coupled large GaAs (g
520.44) quantum dots~parameters as in Fig. 2! containing two
electrons~left graph! and a single electron only~right graph! at T
5100 mK. The box-shaped symbols correspond toB' , and the
circles toBi . The singlet-triplet crossing in the two-electron syste
~due to the Zeeman splitting and the decrease ofJ) causes a jump in
the magnetization around 5.5 T forBi , but no such signature oc
curs forB' .
-

ts

t

-
l
d.

-

-

-
m

m

on the dot plays the role of the qubit. Operating a coup
quantum dot as a quantum gate requires the ability to sw
on and off the interaction between the electron spins
neighboring dots. Here we present a simple method
achieving a high-sensitivity switch for vertically couple
dots by means of a horizontally applied electric fieldEi . The
idea is to use a pair of quantum dots with different late
sizes, e.g., a small dot on top of a large dot (a01.a02 ; see
Fig. 1!. Note that only the radius in thexy plane has to be
different, while we assume that the dots have the sa
height. Applying an in-plane electric fieldEi in this case
causes a shift of the single-dot orbitals byDx6

5eEi /mvz
2a06

2 5Ei /E0a06
2 , where E05\vz /eaB ; see

Fig. 9. It is clear that the electron in the larger dot mov
further in the~reversed! direction of the electric field (Dx2

.Dx1), since its confinement potential is weaker. As a
sult, the mean distance between the two electrons cha
from 2d to 2d8, where

d85Ad21
1

4
~Dx22Dx1!25Ad21A2S Ei

E0
D 2

, ~22!

with A5(1/a02
2 21/a01

2 )/2. Using Eq.~11!, we find thatS
} exp(2d82)} exp@2A2(Ei /E0)

2#, i.e., the orbital overlap de
creases exponentially as a function of the applied elec
field Ei . Due to this high sensitivity, the electric field is a

FIG. 7. MagnetizationM ~in units of Bohr magnetons! as a
function of the B field for vertically coupled small InAs (g
5215) quantum dots~parameters as in Fig. 4! containing two
electrons~left graph! and a single electron only~right graph! at T
54 K. The box-shaped symbols correspond toB' , and the circles
to Bi . The singlet-triplet crossing in the two-electron system cau
a jump in the magnetization around 9 T forBi , and one at about
12.5 T forB' .

FIG. 8. MagnetizationM ~in units of Bohr magnetons! as a
function of the perpendicular electric fieldE' for vertically coupled
quantum dots containing two electrons at a fixed magnetic fi
The box-shaped symbols correspond toB' , and the circles toBi .
Starting atE50 with a triplet ground state forBi ~not so forB'),
the electric field eventually causes a change of the ground s
back to the singlet, which leads again to a jump in the magnet
tion for Bi . The left graph corresponds to a GaAs double dot~pa-
rameters as in Fig. 2! at T5100 mK andB55 T, whereas the right
graph is for a smaller InAs double dot~as in Fig. 3! at T54 K and
B510 T.
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ideal ‘‘switch’’ for the exchange couplingJ which is ~as-
ymptotically! proportional toS2, and thus decreases exp
nentially on the scaleE0/2A. Note that if the dots have ex
actly the same size, thenA50 and the effect vanishes. W
can obtain an estimate ofJ as a function ofEi by substituting
d8 from Eq.~22! into the Heitler-London result@Eq. ~10!#. A
plot of J(Ei) obtained in this way is shown in Fig. 9 for
specific choice of GaAs dots. Note that this procedure is
exact, since it neglects the tilt of the orbitals with respect
their connecting line. Exponential switching is highly des
able for quantum computation, because in the ‘‘off’’ state
the switch, fluctuations in the external control parame
~e.g., the electric fieldEi) or charge fluctuations cause on
exponentially small fluctuations in the couplingJ. If this
were not the case, the fluctuations inJ would lead to uncon-
trolled coupling between qubits and therefore to multip
qubit errors. Such correlated errors cannot be corrected
known error-correction schemes, which are designed for
correlated errors.36 It seems likely that our proposed switch
ing method can be realized experimentally, e.g., in vert
columnar GaAs quantum dots,16 with side gates controlling
the lateral size and position of the dots, or in SAD’s whe
one can expect different dot sizes in any case.

VI. SPIN MEASUREMENTS

The magnetization~Figs. 6–8!, measured as an ensemb
average over many pairs of coupled quantum dots in ther
equilibrium, reveals whether the ground-state of the coup
dot system is a spin singlet or triplet. On the one hand, s
a magnetization could be detected by a superconduc
quantum interference device or with cantilever-based37,38

magnetometers. This type of spin measurement was alre
suggested earlier for laterally coupled dots.7 The distinction

FIG. 9. Switching of the spin-spin coupling between dots
different size by means of an in-plane electric fieldEi (B50). The
exchange coupling is switched ‘‘on’’ atE50. When an in-plane
electric fieldEi is applied, the larger of the two dots is shifted to t
right by Dx2 , whereas the smaller dot is shifted byDx1,Dx2 ,
whereDx65Ei /E0a06

2 and E05\vz /eaB . Therefore, the mean
distance between the electrons in the two dots grows asd8
5Ad21A2(Ei /E0)2, where A5(a01

2 2a02
2 )/2a01

2 a02
2 . The ex-

change couplingJ, being exponentially sensitive to the interdot di
tance d8, thus decreases exponentially:J'S2' exp@22A2(Ei /
E0)

2#. We have chosen\vz57 meV, d51, a0151/2, anda02

51/4. For these parameters, we findE05\vz /eaB50.56 mV/nm
and A5(a01

2 2a02
2 )/2a01

2 a02
2 56. The exchange couplingJ de-

creases exponentially on the scaleE0/2A50.047 mV/nm for the
electric field.
ot
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between a spin singlet (S50) and triplet (S51) is also pos-
sible using optical methods: Measurement of the Fara
rotation,3,4 ~caused by the precession of the magnetic m
ment around a magnetic field! reveals if the two-electron
system is in a singlet (S50) with no Faraday rotation or in
a triplet (S51) with finite Faraday rotation. Finally, i
should also be possible to obtain spin information via opti
~far-infrared! spectroscopy.10

We remark that if it is possible to measure the magn
zation of just one individual pair of coupled dots, then this
equivalent to measuring a microscopic two spin-1/2 syste
i.e., 1/2̂ 1/250% 1. Elsewhere we described how such i
dividual singlet and triplet states in a double dot can be
tected~through their charge! in transport measurements v
Aharonov-Bohm oscillations in the cotunneling curre
and/or current correlations.39–41

It is interesting to note that above scheme allows one
measure even a single spin 1/2, provided that, in addit
one can perform one two-qubit gate operation~correspond-
ing to switching on the couplingJ for some finite time! and
a subsequent single-qubit gate by means of applying a l
Zeeman interaction to one of the qubits.~Such local Zeeman
interactions can be generated, e.g., by using local magn
fields or by inhomogeneousg factors.39! Explicitly, such a
single-spin measurement of the electron is performed as
lows. We are given an arbitrary spin 1/2 stateua& in quantum
dot 1. For simplicity, we assume thatua& is one of the basis
states,ua&5u↑& or ua&5u↓&; the generalization to a superpo
sition of the basis states is straightforward. The spin in qu
tum dot 2 is prepared in the stateu↑&. The interaction J be-
tween the spins in Eq.~1! is then switched on for a timets ,
such that*0

tsJ(t)dt5p/4. By doing this, a ‘‘square-root-of-
swap’’ gate2,34 is performed for the two spins~qubits!. In the
caseua&5u↑&, nothing happens, i.e., the spins remain in t
state u↑↑&, whereas, ifua&5u↓&, then we obtain the en
tangled state (u↓↑&1 i u↑↓&)/A2, ~up to a phase factor which
can be ignored!. Finally, we apply a local Zeeman term
gmBBSz

1 , acting parallel to thez axis at quantum dot 1 dur
ing the time intervaltB , such that*0

tB(gmBB)(t)dt5p/2.
The resulting state is~again up to unimportant phase factor!
the triplet stateu↑↑& in the case whereua&5u↑&, whereas we
obtain the singlet state (u↑↓&2u↓↑&)/A2 in the caseua&
5u↓&. In other words, such a procedure maps the tripletu↑↑&
into itself and the stateu↓↑& into the singlet@similarly, the
same gate operations mapu↓↓& into itself, while u↑↓& is
mapped into the triplet (u↑↓&1u↓↑&)/A2, again up to phase
factors#. Finally, measuring the total magnetic moment of t
double dot system then reveals which of the two spin sta
in dot 1, u↑& or u↓&, was realized initially.

VII. DISCUSSION

In summary, we have calculated the spin exchange in
action J(B,E) for electrons confined in a pair of verticall
coupled quantum dots, and have compared the two-elec
spectra~with level splittingJ) to the single-electron spectr
~with level splitting 2t). Comparing the one- and two
electron spectra enables us to distinguish one-electron fil
from two-electron filling of the double dot in an experimen
For two-electron filling in the presence of a magnetic field
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ground-state crossing from a singlet to a triplet occurs
fields of about 5 –10 T, depending on the strength of
confinement, the coupling, and the effectiveg factor. The
crossing can be reversed by applying a perpendicular ele
field.

As a model for the electron confinement in a quantum d
we have chosen harmonic potentials. However, in some s
ations ~especially self-assembled quantum dots! it is more
accurate to use square-well confinement potentials in o
to model the band-gap offset between different materials.
have also performed calculations using square-well po
tials, which confirm the qualitative behavior of the resu
obtained using harmonic potentials. The results from us
the square-well model potentials cannot be written in sim
algebraic expressions, and are given elsewhere.33

Furthermore, we have analyzed the possibilities of swit
ing the spin-spin interactionJ using external parameters. W
find that in-plane magnetic fieldsBi ~perpendicular to the
interdot axis! are better suited for tuning the exchange co
pling in a vertical double-dot structure than a fieldB' ~ap-
plied along the interdot axis!. Moreover, we have confirme
that the dependence of the exchange energy on a mag
field is stronger for weakly confined dots than for structu
with strong confinement. An even more efficient switchi
mechanism is found when a small quantum dot is couple
a large dot: In this case, the couplingJ depends exponen
tially on the in-plane electric fieldEi , and thus provides an
ideal external parameter for switching the spin coupling
and off with exponential sensitivity. The experimental co
firmation of the electrical switching effect would be an im
portant step toward solid-state quantum computation w
quantum dots.

Another ~very demanding! key experiment for quantum
computation in quantum dots is the measurement of sin
electron spins. Here we have presented a theoretical sch
for a single-spin measurement using coupled quantum d
Obviously this scheme already requires some controlled
teraction between the spins~qubits!, and therefore the suc
cessful implementation of some switching mechanisms.
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APPENDIX A: HUND-MULLIKEN MATRIX ELEMENTS

Here we list the explicit expressions for the matrix e
ments defined in Eqs.~13!–~17! for two dots with arbitrary
~and possibly different! single-electron Hamiltoniansh6a
and~nonorthogonal! single-electron orbitalsw6a centered at
z56a. The matrix elements are

V15N4@2g2~G1
11G1

2!14g2S2G1
014g2G21~11g2!2G3

26g2~G4
11G4

2!#, ~A1!

V25N4~12g2!2@G32S2G2#, ~A2!
t
e

ric

t,
u-

er
e

n-

g
e

-

-

tic
s

to

n
-

h

e-
me
ts.
-

s

-

U65N4@G1
61g4G1

712g2S2G1
012g2S2~G21G3!

24gS~G4
62g2G4

7!#, ~A3!

X5N4@~11g4!S2G1
01g2~G1

11G1
2!12g2S2G212g2G3

22g~11g2!S~G4
11G4

2!#, ~A4!

w65N4@2gG1
62g3G1

72g~11g2!~2S2G1
01G3!

1S~113g2!G4
61S2g2~11g2!G4

7#, ~A5!

with N51/A122Sg1g2 andg5(12A12S2)/S. We have
introduced the overlap integrals

G1
65^w6aw6auCuw6aw6a&, ~A6!

G1
05S22^w6aw6auCuw7aw7a&, ~A7!

G25S22^w6aw7auCuw7aw6a&, ~A8!

G35^w6aw7auCuw6aw7a&, ~A9!

G4
65S21^w6aw6auCuw6aw7a&. ~A10!

Note that the expressions forG1
0, G2, andG3 are invariant

under exchange ofwa and w2a . In the case where the two
single-particle Hamiltonians coincide~implying that the dots
have the same size!, we find G1

15G1
2 (5G1

0, sinceC de-
pends only on the relative coordinate! andG4

15G4
2 , and the

expressions in Eqs.~A1!–~A5! for the matrix elements can
be simplified accordingly. This simplification leads to th
same form of the Hund-Mulliken matrix elements which w
have calculated for laterally coupled dots.7 If it is possible to
choose the orbitalsw6a to be real; e.g., if the magnetic fiel
is in thez direction, thenG1

05G2, leading to a further sim-
plification of the matrix elements@Eqs.~A1!–~A5!#.

APPENDIX B: HUND-MULLIKEN MATRIX ELEMENTS,
B�x,y

If the single-electron Hamiltonian is given by Eq.~5! with
a perpendicular fieldB'x,y then we can further evaluate th
integrals Eqs.~A6!–~A10! and the single-particle matrix el
ements in Eqs.~13!–~17! as a function of the dimensionles
interdot distanced5a/aB and the magnetic compression fa
tors a6(B)5Aa06

2 1B2/B0
2. The single-particle matrix ele

ments are given by

e65
\vz

2 H 11
3

16d2
1

S

12S2 Fa6

g
1ga7

6
1

4

a01
2 2a02

2

a1a2
S ga62

a7

g D @12erf~d!#G
1

S2

12S2 S 3

4
~11d2!2~a61a7! D J , ~B1!
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t5
\vz

2

S

12S2 F1

4

a01
2 2a02

2

a1a2
@12erf~d!#~a12a2!

1
3

4
~11d2!G , ~B2!

where S5@2Aa1a2/(a11a2)#exp(2d2). The ~two-
particle! Coulomb matrix elements can be expressed as
Eqs.~A1!–~A5!, where the integrals@Eqs.~A6!–~A10!# take
the forms

G1
65\vz

2c

p

a6

A12~2a621!2
arccos~2a621!, ~B3!

G25G1
05\vz

c

p

a11a2

A12~a11a221!2
arccos~a11a221!,

~B4!

G35\vzAmc exp~2md2!@12erf~dA2m!#, ~B5!

G4
65\vzcA2a6~a11a2!

3a11a2
exp~m6d2!@12erf~dAm6!#,

~B6!

where we have introducedm52a1a2 /(a11a2) and m6

5(a6
2 1a1a2)/(3a61a7). Equations~B5! and ~B6! are

approximations which deviate from the exact result
,12% in the ranged.0.7 andm<1, as we have checke
by numerical evaluation of the integrals.

APPENDIX C: HUND-MULLIKEN MATRIX ELEMENTS,
Bix

The Hund-Mulliken calculation for a system of two equ
dots with a magnetic field applied in thex direction~Sec. IV!
is formally identical to the one with a field in thez direction
presented in Sec. III. For equal dots we seta015a02

[a0 , a15a2[a, and e15e2[e. The one-particle ma-
trix elements are then

e5
\vz

2 Fa01a1b1
3

16d2b2
1

S2

12S2

3

4 S 1

b
1d2D

2
S2

12S2

b2a

a
2d2S B

B0
D 2G , ~C1!

t5
\vz

2

S

12S2 F3

4 S 1

b
1d2D2

b2a

a
2d2S B

B0
D 2G . ~C2!

Since we consider two equal dots, the matrix elements of
Coulomb Hamiltonian are formally equal to those given
Ref. 7, whereFi has to be replaced byGi , defined by
in

e

G1[G1
15G1

25G1
0

5\vz

c

p
Aaa0bE

0

`

drrK 0S br 2

4 D I0S a2a0

4
r 2D

3e2(1/4)(a1a02b)r 2
, ~C3!

G25\vz

c

p
Aaa0bE

0

`

drE
2`

`

dz
r

Ar 21z2
I 0S a2a0

4
r 2D

3e2(1/4)(a1a0)r 22(1/2)b(z12d)2
, ~C4!

G35\vz

c

p
Aaa0bed2(B/B0)2/aE

0

`

drE
2`

`

dy
r

Ar 21y2

3I0S b2a0

4
r 2De2(1/4)(b1a0)r 22(1/2)ay2

3cos~2ydB/B0!, ~C5!

G4[G4
15G4

25\vz

c

2p2
Aaa0bE

2`

`

dyE
2`

`

dzK0S a0

4
~y2

1z2! De2(1/4)(2a2a0)y22(1/2)b(z2d)21
1
4 a0z2

cos~ydB/B0!.

~C6!

Here K0 denotes the zeroth-order Macdonald function, a
I 0 is the zeroth-order modified Bessel function. The quan
ties a, b, andS have been defined earlier.

APPENDIX D: HEITLER-LONDON CALCULATIONS, Bix

In the following we evaluate the exchange energyJ for
two coupled quantum dots in a magnetic field applied p
pendicularly to the interdot axis (Bix) using the Heitler-
London approach. We first study the one-particle probl
for an anisotropic quantum dot with a magnetic field appl
perpendicularly to the symmetry axis of the dot,

h0~r !5
1

2m S p2
e

c
A~r ! D 2

1
mvz

2

2
@a0

2~x21y2!1z2#,

~D1!

wherea0 is the ellipticity andA(r )5B(0,2z,y)/2. We can
separateh0(r )5hx

0(x)1hyz
0 (y,z) into a B-independent har-

monic oscillatorhx
0(x)52(\2/2m)]x

21(mvz
2/2)a0

2x2, and a
B-dependent part

hyz
0 ~y,z!5py

21pz
22vLLx1

mzv
2

2
~a2y21b2z2!,

~D2!

with a5Aa0
21(vL /vz)

25Aa0
21(B/B0)2, and b

5A11(vL /vz)
25A11(B/B0)2. We have not solved Eq

~D2! exactly; instead we have used a variational approa
minimizing the single-particle energye05^cuhyz

0 uc&/^cuc&
as a function of two variational parameters, in order to fin
good approximate ground-state wave function. A reasona
trial wave functionc should reproduce the anisotropy b
tweeny and z in the Hamiltonian. This requirement is ful
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filled, e.g., by a Gaussianc1(g1 ,g2 ,y,z)5Ne2g1y22g2z2
, or

by mixing Fock-Darwin statesc0,l with angular momental
50, 2, and 22 and radial quantum numbern50,
c2(d2 ,d22 ,y,z)5Ñ@c0,0(y,z)1( l 562d lc0,l(y,z)#, where
d22 ,d2, andg1 ,g2 are variational parameters andN andÑ
are normalization constants. Calculatinge0(g1 ,g2) and
e0(d22 ,d2), and subsequently minimizing with respect
the variational parameters, we find th
c1@mvza/(2\),mvzb/(2\),y,z#, with the normalization
constantN5(mvz /p\)1/2(ab)1/4, is the best approximate
ground-state wave function in our variational space. We h
also shown that including the Fock-Darwin states with an
lar momentum quantum numbersl 561 in c2 does not lead
to a lower minimum of the energŷc2uhyz

0 uc2&/^c2uc2&. The
full one-particle wave function is then given by

w~x,y,z!5S mvz

p\ D 3/4

~a0ab!1/4e2mvz(a0x21ay21bz2)/2\.

~D3!
e
-

Shifting the single-particle orbitals to (0,0,6a) in the pres-
ence of a magnetic field, we obtain Eq.~20!, where the phase
factor involving the magnetic lengthl B5A\c/eB is due to
the gauge transformationA6a5B(0,2@z7a#,y)/2→A
5B(0,2z,y)/2. Having found an approximate solution fo
the one-particle problem in a dot centered atz51a or z
52a, we show that the exchange energy is given by E
~21! for a system with two dots of equal size, whereJ0

denotes the result from Eq.~9!. In the derivation of the for-
mal expression for the exchange energyJ0(B,d) given in
Eq. ~9!, we have used thatw6a was an exact eigenstate o
h6a

0 , and therefore ^w7auh6a
0 uw6a&5S^w6auh6a

0 uw6a&,
where S5^wauw2a& denotes the overlap of the shifte
orbitals. The approximate solution@Eq. ~D3!# for an aniso-
tropic dot in the presence of an in-plane magnetic field is
an exact eigenstate ofh0. Using the corrected off-diagona
matrix element ^w7auh6a

0 uw6a&5S@\vz(a01a1b)/2
1d2(B/B0)2(b2a)/a#, the result for the exchange energ
@Eq. ~21!# can easily be derived.
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