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Spin interactions and switching in vertically tunnel-coupled quantum dots
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We determine the spin-exchange couplihgetween two electrons located in two vertically tunnel-coupled
guantum dots, and its variation when magnéBtand electrigE) fields (both in-plane and perpendiculare
applied. We predict a strong decreasel@fs the in-pland field is increased, mainly due to orbital compres-
sion. Combined with the Zeeman splitting, this leads to a singlet-triplet crossing, which can be observed as a
pronounced jump in the magnetization at in-plane fields of a few T, and perpendicular fields of the order of 10
T for typical self-assembled dots. We use harmonic potentials to model the confining of electrons, and calcu-
late the exchangéd using the Heitler-London and Hund-Mulliken techniques, including the long-range Cou-
lomb interaction. With our results we provide experimental criteria for the distinction of singlet and triplet
states, and therefore for microscopic spin measurements. In the case where dots of different sizes are coupled,
we present a simple method to switch the spin coupling on and off with exponential sensitivity using an
in-plane electric field. Switching the spin coupling is essential for quantum computation using electronic spins
as qubits.

[. INTRODUCTION tures which can host a single electron or a few electrons in a
three-dimensionally confined region. Various techniques for
Several methods to manipulate electronic spin in nanosmanufacturing quantum dots, and methods for probing their
cale semiconductor devices are being developed or are aphysical propertiegsuch as electronic spectra and conduc-
ready availablé.Perhaps even more challenging is the pro-tance, are knowrf: "% In lithographically defined quantum
posal to use the electron spin in quantum dots as the basfots, the confinement is obtained by electrical gating applied
information carrier(the qubi} in a quantum computérThe to a 2DES in a semiconductor heterostructure, e.g., in
recently measured long decoherence times in semiconductéfxGa - As/GaAs. In vertical dots, a columnar mesa struc-
heterostructurésand quantum dofsare encouraging for the ture is produced by etching a semiconductor
further research of solid-state quantum computation. Quarheterostructuré! While laterally coupled quantum dots have
tum logic gates between these qubits are effected by alloweeen defined in 2DES’s by tunable electric gates’ verti-
ing the electrons to tunnel between two coupled quantungally coupled dots have been manufactured either by etching
dots, thereby creating an effective spin-spin interactiond mesa structure out of a triple-barrier heterostructure and
There is a large interest in quantum computation due to itsubsequently placing an electrical side-gate aroutftiit,oy
potential of solving some classically intractable problemsusing stacked double-layer self-assembled ¢8#D’s).!"*®
such as factoring,and speeding up the solution of other In the mesa structure, the number of electrons per dot can be
important problems, e.g., database serEbr the applica- Varied one by one starting from zero, whereas in SAD’s the
tion of coupled quantum dots as a quantum gate, it is imporaverage number of electrons per dot in a sample with many
tant that the coupling between the spins can be switched ofiots can be controlled, even one electron per dot is experi-
and off via externally controlled parameters such as gatéentally feasible?

voltages and magnetic fields. In a recent publicafiome Self-assembled quantum dots are manufactured in the so-
calculated the spin interaction for two laterally coupled and

identical semiconductor quantum dots defined in a two- z.B..E, 7

dimensional electron systef2DES as a function of these

external parameters, and found that the interacii@an be ag,

switched on and off with exponential sensitivity by changing <» +a;

the voltage of a gate located in between the coupled dots, or 743’& B, E|

by applying a homogeneous magnetic field perpendicular to

the 2DES. In this paper, we consider a different setup con- EaB_ o - a1

sisting of twovertically coupled quantum dots with magnetic

as well as electric fields applied in the plaared perpendicu- V@)

lar to the plane of the substrafsee Fig. 1. We also extend

our previous analysis to coupled quantum dotdifferent FIG. 1. (a) Sketch of the vertically coupled double quantum-dot

sizes, which has important consequences for switching thgystem. The two dots may have different lateral diamesgrsand

spin interaction: When a small dot is coupled to a large onea, . We consider magnetic and electric fields applied either in-

the exchange coupling can be switched on and off with explane @, E/) or perpendicularly B, , E, ). (b) The model poten-

ponential sensitivity using an in-plane electric figgl. tial for the vertical confinement is a double well, which is obtained
Semiconductor quantum dots are small engineered strudy combining two harmonic wells &=+ a.

a) b)
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called Stranski-Krastanov growth mode, where a latticenuch stronger influence on the spin coupling than a perpen-

mismatched semiconducting material is epitaxially grown ondicular magnetic field. Moreover, we will discuss the influ-

a substrate, e.g., InAs on GaASMinimization of the lattice  ence of the dot size ofi and investigate systems containing

mismatch strain occurs through the formation of small threetwo dots of different sizes. We will see that it is possible to

dimensional islands. Repeating the fabrication procedure desuppress the spin-spin coupling exponentially by means of

scribed above, a second layer of quantum dots can be formeah in-plane magnetic fiel® for large dots(weak confine-

on top of the first one. Since the strain field of a dot in themen) or, alternatively, with an in-plane electric fiel if

first layer acts as a nucleus for the growth of a dot in theone of the dots is larger than the other. Furthermore we will

second layer, the quantum dots in the two layers are stronglgoint out differences and similarities in the field dependence

spatially correlated Electrostatic coupling in vertical SADs of the tunnel splittingt found in a quantum mechanically

has been investigatéfland it can be expected that the pro- coupled double-dot system containing only a single electron

duction of tunnel-coupled SADs will be possible in the nearand the exchange enerdy a quantity due to two-particle

future. correlations. Performing these calculations, we make use of
In this paper, we concentrate on the magnetic propertiemethods known from molecular physigdseitler-London and

(including in-plane fieldsB|) of pairs of quantum dots in Hund-Mulliken techniqug thus exploiting the analogy be-

which two electrons are vertically coupled via quantum tun-tween quantum dots and atoms. Note again that besides be-

neling and are subject to the full Coulomb interacti@ee ing interesting in its own right, a quantum-dot “hydrogen

Fig. 1 for a sketch of the system under studyoupled quan- molecule,” if experimentally controllable, could be used as a

tum dots in the absence of quantum tunnelipgrely elec- fundamental part of a solid-state quantum-computing

trostatic interactionswere studied in Refs. 22—24. Elec- device®’ using the electronic spin as the qubit.

tronic spectra and charge densities for two electrons in a In our discussion of the vertically coupled double-dot sys-

system of vertically tunnel-coupled quantum dots at zerdem we proceed as follows. In Sec. Il we introduce a model

magnetic field were calculated in Ref. 25. Singlet-tripletfor a description of a vertical double-dot structure. Subse-

crossings in the ground state of simdlend coupled dots quently (Sec. Ill), we discuss vertically coupled quantum

with two?’ to four’®?° electrons in vertically coupled dots in dots in perpendicular magnetic and electric fields. Section IV

the presence of a magnetic field perpendicular to the growtls devoted to the discussion of a double-dot structure in the

direction B, in Fig. 1) have been predicted. presence of an in-plane magnetic field. In Sec. V we present
In contrast to previous theoretical work on coupleda simple switching mechanism for the spin coupling involv-

dots??>~?the investigation presented here both takes into acing an in-plane electric field. Finally, we discuss the impli-

count quantum tunneling and includés-plane magnetic cations of our result for two-spin and single-spin measure-

fields (B in Fig. 1), leading to a much stronger suppressionments in Sec. VI.

of the exchange energy than fBr, (for very weakly con-

fined dots, in-pland fields can cause a singlet-triplet cross- Il. MODEL

ing, even in the absence of the Zeeman couplifigis result o . o

is in analogy with our earlier finding of a spin singlet-triplet ~ The Hamiltonian which we use for the description of two

crossing in laterally coupled identical dots as the perpendicuvertically coupled quantum dots is

lar field is increased.In addition to this, we investigate the

influence of an electric fieléE, applied in the growth direc- H= > h(r;,p;)+C,

tion on low-energy electronic levels in vertically coupled i=12

guantum dots. From the electronic spectrum, we derive the

equilibrium magnetization as a function of both the magnetic e 2

and electric fieldfmagnetization measurements for many- ~ N("P)= %(p— A | FezERVi(N+V,(r), (2
electron double quantum dots were reported in Ref. B8

another important extension of earlier work, we consider a e?

small dot which is tunnel coupled to a large dot. We find that
this system represents an ideal candidate for a quantum gate,
since the exchange interactidrcan be switched simply by whereC is the Coulomb interaction arfithe single-particle
applying an in-plane electric field| (see Sec. V. Hamiltonian. The dielectric constant and the effective
Our main interest is in the dynamics of the spins of themassm are material parameters. The potentiqlin h de-

two electrons which are confined in the double dot. The spirscribes the lateral confinement, wheragsmodels the ver-
dynamics can be described by an isotropic Heisenberg intetical double-well structure. For the lateral confinement we
action choose the parabolic potential

H= 38,5, @ m a3, +y?), 250
where the exchange enerdys the difference of the energies Vi(x,y) = 2 “z| 2 (x2+y?), z<0 G
of the two-particle ground state, a spin singlet at zero mag- o~ ’ ’
netic field, and the lowest spin-triplet state. We shall calcuwhere we have introduced the anisotropy parametgrs
late the exchange enerdyB,E,a) of two vertically coupled determining the strength of the vertical relative to the lateral
guantum dots containing one electron each as a function afonfinement. Note that for dots of different sizeyy(.
electric and magnetic fields£(and B) and the interdot dis- # «(_) the model potentiglEg. (3)] is not continuous ax
tance . We show that an in-plane magnetic field has a=0. The lateral effective Bohr raddiz.- = Vi/(Mw,aq. are

a K= 1yl
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a measure for the lateral extension of the electron wave func- ma, |4 - 2024 (=)l

tion in the dots. In experiments with electrically gated quan- <P+a(X,y,Z)=( s ) Vo e meda=0CryD T @wayen,

tum dots in a two-dimensional electron system, it has been 6)
shown that the electronic spectrum is well described by a

simple harmonic oscillatdt® In the presence of a magnetic corresponding to the ground-state energy = w,(1

field B, perpendicular to the 2DES, the one-particle problem*2@:)/2. In _Eqg. (6) we have introduced a.(B)

has Fock-Darwin statéas an exact solution. Furthermore, = a5, + o (B)%/ 03=aj. +B%B5,  with  w (B)

it has been shown experimentdfiyand theoreticall§* thata ~=eB/2mc the Larmor frequency and,=2mcw,/e the
two-dimensional harmonic confinement potential is a reasonmagnetic field for whichw,=w_ . The parametersy. (B)

able approximation to the real confinement potential in adescribe the compression of the one-particle wave function
lens-shaped SAD. In describing the confinem¥ptalong  perpendicular to the magnetic field. For finding the exchange
the interdot axis, we have usedlacally harmoni¢ double-  energyJ we make the Heitler-London ansatz, using the sym-

well potential of the forn{see Fig. 1b)] metric and antisymmetric two-particle wave-functions
, |W.)=(]12)+|21))/2(1+S?), where we use the one-

Moy L, particle orbitals¢ _,(r)=(r|1) and ¢, ,(r)=(r|2). Here

Vv_g(z —a’)%, @ Jij)=|i)lj) are two-particle product states, an

=[d® ¢* (1) ¢_a(r)=(2|1) denotes the overlap of the
which, in the limit of large interdot distance>ag, sepa- right and left orbitals. A nonvanishing overl&implies that
rates(for z~ *+ a) into two harmonic wellgone for each dot  the electrons can tunnel between the dots. Using the two-
of frequencyw,. Herea is half the distance between the particle orbitald ¥ ) we can calculate the singlet and triplet
centers of the dots anag= A/(Mw,) is the vertical effec-  energy e,=(W¥.|H|¥.), and therefore the exchange en-
tive Bohr radius. For most vertically coupled dots, the verti-ergy J=¢,— e,. We rewrite the Hamiltonian, adding and
cal confinement is determined by the conduction-band offsesubtracting the potential of the single upgtwer) dot for
between different semiconductor layers; therefore, in pringlectron 1 (2) in H, as H:h‘ja(rl)+h3a(r2)+w+ C,
ciple, a square-well potential would be a more accurate dewhich is convenient because it contains the single-particle
scription of the real potential than the harmonic double We”HamiItonianshﬁa andh® , of which we know the exact so-
(note however, that the required conduction-band offsets argions. The potential term BV(ry,r,) =W, (X1,Y1,X2,Y2)
not always known exactly There is no qualitative difference |y (21,2,), where
between the results presented below obtained with harmonic ~*

potentials and the corresponding results which we obtained Mmw?
using square-well potentiafs. Wi(X1,Y1.X2.Y2) = > Vi(Xi,Yi)— Tz[aé_(xfﬂ/i)
It was shown in Refs. 7 and 34 that the spin-orbit contri- 1=1.2
bution (due to the confinement .= (w2/2m.c?)S-L, with +al, (C+yd)], @
m. being the bare electron mass, can be neglected in the
relevant cases, e.gH¢/Aw,~10 7 for Aw,=30 meV in Ma?
GaAs. W, (21,2)= 2 V()= —~ (21t a)?+(z-a)%].
=1,

The Zeeman splittingl ;=gug>;-1B- S is not included
in the two-particle HamiltoniadEq. (2)], since in the ab-
sence of spin-orbit coupling one can treat the orbital problenThe formal expression fa¥ is now
separately and include the Zeeman interaction latdrich
we will do when we study the low-energy spectra and the Re(12/C+W|21)
magnetization Here we have denoted the effectigdactor J= (12C+W[1)— ————|. 9
1-s S
by g and the Bohr magneton hyg .

®

2

Evaluating the matrix elementsl2C+W|12) and (12/C

Ill. PERPENDICULAR MAGNETIC FIELD B, +W|21), we obtain
We first study the vertically coupled double dot in a per- 232 ,
pendicular magnetic fiel®8=B, (cf. Fig. 1) which corre- J= ho, c\/ﬁezf‘d [1—erf(dy2u)]
sponds to the vector potentidl(r)=B(—y,x,0)/2 in the 1-s
symmetric gaugéfor the time being, we seéE=0). N
The confining potentials for the two electrons are givenin ~ _ c ara arcco$a, +a_—1)
Egs.(3) and(4). As a starting point for our calculations we T J1—(a;+a_—1)?
consider the problem of an electron in a single quantum dot.
The one-particle Hamiltonian by which we describe a single 1, o [+ a- 3 2
electron in the uppetlowen dot of the double-dot system is 7@+~ ao) a,a_ [1-erf(d)]+ £ (1+d),
2 me? (10)

+ - Lag. (¢ +y?)

1 e
h%a(r)=—(p— —A(r) . .
= 2m c where erfk) denotes the error function. We have introduced

the dimensionless parametats-a/ag for the interdot dis-
tance, ancc= \/7/2(e?/ kag)/h w, for the Coulomb interac-
and has the ground-state Fock-Dartfisolution tion. Note thatw.. , u=2a, a_/(a,+ a_), and the overlap

+(z+a)?], (5
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Voo 5 Heitler-London calculatior{but the same triplet energg),
S= 2—a++a_ exp(—d<), (1) and that thereford= e,— € will be larger than the Heitler-

London resul{Eq. (10)].

depend on the magnetic fieBl The first term in the square W& now apply the Hund-Mulliken approach to calculate
brackets in Eq(10) is an approximate evaluation of the di- the €xchange energy of the double-dot system. We therefore
rect Coulomb integra(12C|12) for d=0.7 and for mag- introduce the orthonormalized one-particle wave functions
netic fieldsB<By.%> The second term in Eq10) is the P=a=(¢+a—0¢sa)/V1=2Sgtg”, ~ where  g=(1
(exac) exchange Coulomb integrél2 C|21)/S?, while the ~— V1—S7)/S. Using®..,, we generate four basis functions
last two terms stem from the potential integrals, which wereVith respect to which we diagonalize the two-particle Hamil-
also evaluated exactly. If the two dots have the same size, tHenian H: States with double occupationW? (ry.r>)
expression for the exchange enef@y. (10)] can be simpli- =®.4(r1)®.4(r2), and states with single occupation,
fied considerably. We will first study the case of two dots of WS (r1,r2) =[®, o(r)® _(rp) =@ _,(r)® 4(r2) /2.

equal size, and later come back to the case of dots whicRalculating the matrix elements of the Hamiltonidrin this

differ in size. orthonormal basis, we find
Setting ag. = @g_=ag in Eq. (10), and using Eq(11),
we obtain 2¢+V, —\2ty. —2t,_ 0
aol T V2t 2e.+U, X 0
ﬁw = ]
Jzﬁ c\ae? [ 1-erf(d\2a)] —\2ty- X 2¢.+U_ 0
sin(2d") 0 0 0 2e+V._
c  2a 3 (13
— — —————arcco$2a—1)+ —(1+d°) |,
T J1—(2a—1)2 $2a—1) 4( ) where
(12 1
€.=(D. Jh(zFa)|P.,), e=5(er+e ), (19
wherea = \/a2+B?/B2. As before, the first term in Eq12) : : 20"
is the direct Coulomb term, while the second téappearing
with a negative signis the exchange Coulomb term. Finally, 1 d
the potential term in this case equals=(3/4)(1+d?), and the=t=We=—(Dgfh|d o) — E<‘I’+|C|‘I’ta>-
is due to the vertical confinement only. For two dots of equal (15)

size neither the prefactorS3/(1— S* nor the potential term
depends on the magnetic field. Since the direct Coulomb
term depends 0B, only weakly, the field dependence of the
exchange energy is mostly determined by the exchange Cou- q d
lomb term. X=(VL,|Cl¥S,). 17
Note that for obtaining the large-field asymptoticB (
=B), it would be necessary to include hybridized one-
particle wave functionésince in the magnetic field the level
spacings between the one-particle ground states are shrinki
and eventually become smaller tharnthus undermining the
self-consistency of the one-orbital Heitler-London approxi-
mation. Increasing the interdot distanddfor a fixed con- S .
finementfi ), an exponential decrease of the exchange endPly simplifies sincety_=ty.=ty, e,=e_=¢ and U,
ergyJ is predicted by Eq10) and(12). As mentioned, Eq. — Y-=Y.- In this case the eigenvalues arg =2e+Up/2
(10) is an approximation and should not be used for smalitV+* VUR/4+ 4t and eo=2e+Uy—2X+V, for the
interdot distanced=<0.7. There are also some limitations on three singlets, ane.=2¢+V_ for the triplet, where we have
the choice of the anisotropy parametess. . If we consider ~ introduced the additional quantity,;=U — V., +X. The ex-
a system with much stronger vertical than lateral confinechange energy is the difference between the lowest singlet
ment (e.g., ap. =1/10), the exchange energy will become and the triplet state]= ,— e, =V —Up/2+ U7+ 163/2,
larger than the smallest excitation eneryg=ay.fiw, in  Where we have used=V_—V, . The singlet energies,,
the single-dot spectrum. In that case we have to improve ougnd eg, are separated frorg, and e by a gap of ordet)
Heitler-London approach by including hybridized single-dotand are therefore negligible for the study of low-energy
orbitals! If, on the other hand, the two dots are different in properties. If only short-range Coulomb interactions are con-
size, a double occupation of the larger dot is energeticallgidered(which is usually done in the standard Hubbard ap-
favorable, and a Hund-Mulliken approach should be emproach the exchange energy J reduces to
ployed. In the Hund-Mulliken approximation, the Hilbert —U/2+\U%+ 16t%/2, wheret andU denote the hopping ma-
space for the spin singlet is enlarged by including two-trix element and on-site repulsion which are not renormal-
particle states describing a double occupation of a quantunzed by interaction. We call the quantiti¢g and Uy the
dot. Since only the singlet sector is enlarged it can be exextendedopping matrix element anektendedn-site repul-
pected that we obtain a lower singlet eneegyhan from the  sion, respectively, since they are renormalized by long-range

Ve=(PL|Cl¥L), UL=(¥L[Cl¥i,), (1§

The general form of the entries of the matfkg. (13)] are
given in Appendix A. The evaluation for perpendicular mag-
tic fieldsB, can be found in Appendix B. We do not

splay the eigenvalues of the matfikq. (13)] here, since
the expressions are lengthy. However, if the two dots have
the same sizedy_ = g, ), then the Hamiltonian consider-
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FIG. 2. Left graph: Exchange energyas a function of the FIG. 3. Exchange energy/(left graph and single-electron tun-

magnetic fieldB applied vertically to thexy plane B, , box sym-  neling amplitudet (right graph as a function of the applied mag-
bolg and in-plane By, circle symbolg, as calculated using the netic field for two vertically coupled smalheight 6 nm, width
Hund-Mulliken method. Note that due to vertical orbital compres-12 nm) InAs m=0.08n,, k=14.6) quantum dotde.g., self-
sion, the exchange coupling decreases much more strongly for agssembled dotsin a center-to-center distance of 9 nm={1.5).
in-plane magnetic field. The parameters for this plot correspond to ghe box-shaped symbols correspond to the magnetic Belcp-
system of two equal GaAs dots, each 17 nm high and 24 nm irplied in thez direction, and the circle symbols to the fiddgl in the
diameter(vertical confinement energfw,=16 meV and anisot- x direction. The plotted results were obtained using the Hund-
ropy parameteryy=1/2). The dots are located at a center-to-centermulliken method, and are reliable up to a fielky~15 T, where
distance of 2=31 nm (d=1.8). The single-orbital approximation higher levels start to become important.
breaks down at abouBy,~9 T, where it is expected that levels
which are higher in the zero-fieldB(=0) spectrum determine the that are deeper but closer together, sinee=dag
exchange enfer?é/.fRigI;t graph: single-particle Lunneling amplﬁudi:dm), we observe an increase in the discrepancy be-
vs magnetic field for the same system. Note that in contrast to t . ]
exchange couplin¢a genuine two-particle quantjtyt describes the EzﬁﬁnJmHgtrzingl‘]eHr;eartltfseroromslgt?oer;[gl Ilc;ld' iﬁgiﬁzeo?—iittgn
tunneling of asingleparticle. Wheread shows a weak dependence g_ . . prop @z

repulsionU is proportional to the Coulomb energ?/ xag

on the vertical magnetic fielB, , we note that(B,) (box-shaped . . .
g * (B.)( P «\hw,, the Hubbard ratidy /Uy increases as# w, if the

symbolg is constant. i o -

confinement is increased at constant distance; thus double
occupancy becomes more important, explaining the increas-
ing difference betweeildy,, and Jy . Both increasing the
interdot distance & and the confinemerttw, lead to a larger

Coulomb interactions. If the Hubbard ratig/U,, is =<1, we
are in the Hubbard limit, wherd@ approximately takes the
form (cf. Ref. 7)

at? oL@ ] S0HO) e
J= O +V. (18 g 45) T
H a0f N T

The first term in Eq(18) has the form of the standard Hub- T o
bard model result, whereas the second t&fns due to the 0 5 10 15 20
long-range Coulomb interactions and accounts for the differ- B(T) B(T)
ence in Coulomb energy between the singlet and triplet states 120 . - —3 - - —]
VS . We have evaluated our result for a GaAsn ( ) B @ - e
=0.06",, k=13.1) system comprising two equal dots ig_m‘—'ﬁﬁﬁil—-ww*“““::
with vertical confinement energyfiw,=16 meV (g 40} L e
=17 nm) and horizontal confinement energyoh w, T 85zl s
=8 meV in a distancea=31 nm ([d=1.8). The result is 0 5 10 15 20 0 5 10 15 20
plotted in Fig. 2(left graph, box-shaped symbalsThe ex- B(T) B (T)
change energy(B,) as obtained from the Hund-Mulliken
method for two coupled InAs SAD’s nﬁz0.0&ne,lg K FIG. 4. Field dependence of the lowest four electronic levels for

=14.6,w,=50 meV, ag, = ay_ = 1/4) is plotted in Fig. 3 tWo vertically coupled InAs dot@arameters as in Fig)3ncluding
(left graph, box symbojs Including the Zeeman splitting, we the Zeeman coupling with factorginas= — 15. Left graphg(a) and
can now plot the low-energy spectrum as a function of thdb)]: Spectrum for a two-electron system involving the Zeeman-

magnetic field; see Fig. 4left). Note that the spectrum sp!it spin-triplgt stategbox, circle, and triangle symbdg|sand the
clearly differs from the single-electron spectrum in the SPin-singlet(diamond symbols The exchange energy corre-
double dot(Fig. 4, right sponds to the gap between the singlet and the middle=0, box-

We now explain to what extent the Hund-MullikéHM) ?hﬁjped symbﬁ]smplet ednergles.hUnder t?e |nf|ue_nC(T of an |n-_p:ane
Its(which we use for our quantitative evaluations}f feld Blx (@), the ground state changes from a singlet to a triplet at
resu h h | btained f he Heitl about 9 T, whereas in a perpendicular fi@d x (b) the singlet-
are more accurate than the results obtained from the Heit eEfiplet crossing occurs at a higher field, about 12.5 T. Right graphs

London(HL) methOd(_Wh_'Ch are more simple and Wh'_Ch we [(c) and (d)]; single-particle spectra, again plotted as a function of
used mostly for qualitative argumenthe Hund-Mulliken: B (c) andB, (d). Note that single-particle and two-particle spectra
method improves on the Heitler-London method by takinggre clearly distinguishable. In particular, there is no ground-state
into account double-electron occupancy of the quantum dotgyossing for a single electron. Ttfield dependence of the spec-
The Hubbard ratid,; /Uy can be considered a measure for trum of the large GaAs dot&f. Fig. 2 is similar, with a much

the relative importance of double occupancy. Increasing themaller Zeeman splittingggaa= — 0.44). The plots are reliable up
confinementt w, at constantd (leading to potential wells to a fieldBy=~15 T, where higher levels start to become important.
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value ofd=a/ag, and thus to a higher tunneling barrier. A 0.34 T T T

strong decrease of the exchange endrgyth increasingd is 032} GaAs -

observed in both the result calculated according to the

Heitler-London and Hund-Mulliken approaches. < 0801 ]
We now turn to the dependence of the exchange engrgy 2 028} 1 3

on an electric fielde, applied in parallel to the magnetic =

field, i.e., perpendicular to they plane. Using the Heitler- 026 ]

London approach we find the result 0.24 -

28 3(E.\’ 2% 2 4 6 8
J(B,EJ_)—J(B,O)‘FfLwZ@E(E—O) y (19) B(T)
WhereEOmefleaB. The growth ofJ is thus proportional FIG. 5. Exchange energy as a function of the perpendicular

magnetic fieldB for two vertically coupled GaAs quantum dots of
different sizes(both 25 nm high, the upper dot is 50 nm in diam-
fster, and the lower dot is 100 nm in diamet8g,.~2 T andd
=1.5). HereJ is obtained using the Heitler-London methfigq.
10)]. The nonmonotonic behavior is due to the increase in the
verlap[Eg. (11)], when the orbitals are magnetically compressed,
and therefore the size difference becomes smaller.

to the square of the electric field, , if the field is not too
large (see below This result is supported by a Hund-
Mulliken calculation, yielding the same field dependence
small electric fields, whereas BE, a is larger thanU,,
double occupancy must be taken into account. The electri
field causes the exchandet a constant magnetic fieRlto
cross through zero frodd(E=0,B)<0 to J>0. This effect

is signalled by a change in the magnetizatdnsee Fig. 8. . . .
Ingthe presyence of %n electric figEj the ground-gstate in the larger dot has shrunk approximately to the size of the

energy of an electron in the dot at=-+a is e.(E,B) orbital of the smaller C_iO'[, which happens at rougBy,
— w1+ 2a.(B)— (E/Eg)2+ 2dE/E,]/2. The shift of the — 2MCwzao+ /€ (assuming thatro, = aq-).
ground-state energies for the upper, J and lower €_) dot

due to an electric field can bg used to'align the ground-state IV. IN-PLANE MAGNETIC FIELD B
energy levels of two dots of different sizenly for two dots _ _ _ o
of equal size, the energy levels are aligned at zero)fighis In this section we consider two dots of equal size in a

is important because level alignment is necessary for cohemagnetic fieldB which is applied along the axis, i.e.,in

ent tunneling and thus for the existence of the two-particledlane(see Fig. 1 Since the two dots have the same size, the
singlet and triplet states. The paramefgrdenotes the elec- lateral confining potentialEq. (3)] reduces toV(x,y)

tric field at which the one-particle ground states are aligned= mw2a3(x?+y?)/2, where the parameter, describes the
e.(B,Ey) =¢€_(B,E,) (for dots of equal size£,=0). Inves-  ratio between the lateral and the vertical confinement energy.
tigating the dependence dfon E, , one has to be aware of The vertical double-dot structure is modeled using the poten-
the fact that coherent tunneling is suppressed as the electri@l [Eq. (4)]. The single-dot Hamiltonian is given by EG),

field is increased, since the single-particle levels are detunedith the vector potential(r)=B(0,—z,y)/2. The situation
(note, however, that the suppression is not exponeniiais  for an in-plane field is a bit more complicated than for a
level detuning limits the range of application of E4.9),  perpendicular field, because the planar and vertical motion
which is only valid for small level misalignment,eRE do not separate. In order to find the ground-state wave func-
—E,)a<J(0,0), whereJ(0,0) is the exchange at zero field. tion of the one-particle Hamiltoniah® ., we have applied
Assuming gates at 20 nm below the lower and at 20 nmhe variational methodcf. Appendix D, with the result

above the upper dot in the system discussed abowe (2

~31 nm, fw,=16 meV, and ay=1/2), we find that e, | 34 Mo

2aE e=J(0,0~0.7 meV at a gate voltage of abolt _ z 1/4 _ " 2 2

~1.6 mV. A further condition for the validity of Eq19) is ¢=xa() ( Th ) (a0af) exr{ 2% (apx™+ay
J(E)<hw,ay_, (ag_<ag,). If this condition is not sat-

isfied, we have to use hybridized single-particle orbitals. For .. ya

the parameters mentioned above, we fi{&, ) =% w,aq_ +B(z+a)%)xi o12| (20
=8 meV at a gate voltage ~270 mV; therefore, this con- B
dition is automatically fulfilled if 2 E, a<J(0,0). The num- o ]
bers used here are arbitrary but quite representative, as tygiote that_thls is not the exact smgle—_dot ground state, except
cal exchange energies are on the order of a few meV antpr spherical dots ¢,=1). We have introduced the param-
interdot distances usually range from a few nm to a few ten€ters a(B) = a§+ (B/Bp)* and 5(B) =1+ (B/By)?, de-

of nm. scribing the wave-function compression in thandz direc-

In the case where one of the coupled quantum dots i§ons, respectively. The phase factor involving the magnetic
larger than the other, there is a peculiar nonmonotonic bdengthlg= \#c/eB is due to the gauge transformatién ,
havior when a perpendicular fieRl, is applied aE=0, see =B(0,—[z+a],y)/2—A=B(0,—z,y)/2. The one-particle
Fig. 5. The wave-function compression due to the appliedyround-state energy amounts tey,=7%w,(ao+ a+ B)/2.
magnetic field has the effect of decreasing the size differencErom ¢.., we construct symmetric and antisymmetric two-
of the two dots, thus making the overl@Rq. (11)] larger.  particle wave function®’ .., exactly as foB||z. Care has to
This growth of the overlap saturates when the electron orbibe taken calculating the exchange eneigkq. (9) has to be
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FIG. 6. MagnetizationM (in units of Bohr magnetonsas a FIG. 7. MagnetizationM (in units of Bohr magnetonsas a
function of the B field for vertically coupled large GaAsg(  function of the B field for vertically coupled small InAs d
=—0.44) quantum dot¢parameters as in Fig.) Zontaining two = —15) quantum dotgparameters as in Fig.) 4&ontaining two
electrons(left graph and a single electron onlfright graph at T electrons(left graph and a single electron onlfright graph at T
=100 mK. The box-shaped symbols correspondBto, and the =4 K. The box-shaped symbols correspondto, and the circles

circles toB . The singlet-triplet crossing in the two-electron systemto By . The singlet-triplet crossing in the two-electron system causes
(due to the Zeeman splitting and the decreas#) @fauses a jumpin  a jump in the magnetization around 9 T fBj, and one at about
the magnetization around 5.5 T f&j, but no such signature oc- 12.5T forB, .

curs forB, .

. ) ) _ _on the dot plays the role of the qubit. Operating a coupled
mOFI'f'e%' sincep -, is not an exact eigenstate of the Hamil- o ,antum dot as a quantum gate requires the ability to switch
tonianh’, (cf. Appendix D. The correct expression fdrin  on and off the interaction between the electron spins on
this case is neighboring dots. Here we present a simple method of

45 p- 52 achieving a high-sensitivity switch for vertically coupled
J(B,d)=Jy(B,d)—fiw, ad2<_> . (2 QOts k_)y means of a horlzontally applied el_ectn(_: field The
1-S* « Bo idea is to use a pair of quantum dots with different lateral

. L sizes, e.g., a small dot on top of a large dep (> ay_ ; see
e e e e Al Fa. . e ha oy th racus i ey plane s 1o be
. g gy ag different, while we assume that the dots have the same
Bis, through the prefactozréa/(l—s“), deztermmed by the height. Applying an in-plane electric fielg in this case
overlgp S(B,d)=_exp[—d ('B(B)JF(B/B?’) )/a(B.)]’ de- causes a shift of the single-dot orbitals bjx.
pending exponentially on the in-plane field, while for a per- " IMe2a?. —En|Ena? h E—how. .
pendicular field the overlap is independent of the figat  —.© o/ M@z~ =E|/Eoap., where Eo=rfw,/eag; see

- : Fig. 9. It is clear that the electron in the larger dot moves
two dots of equal sizesee Eq(11). We find that for weakly . o .
confined dots §w,<10 meV), there is a singlet-triplet further in the(reversed direction of the electric field Ax_

crossing even without Zeeman interactiod becoming >ﬁxt+h)’ since |tcsj. ctonflnerbneint pm?ﬂt'atl IS Wlealier. Asr? re-
negative as in Ref.)7e.g., forhiw,=7 meV, ay=1/2, and Sult, the mean distance between Ihe two electrons changes

2a=25nm we find such a singlet-triplet crossing Bt from 2d to 2d", where
~6 T. Here we concentrate on more strongly confined dots 1
d= \/d2+ Z(Ax_—Ax+)2= \/d2+A2

E 2
(hw,=10 meV), wherel remains positive for arbitrar. —l) , (22
Generally, the decay af becomes flatter as the confinement Eo
is increased. Improving on the Heitler-London result, weyith A=(1/a2_—1/a?2,)/2. Using Eq.(11), we find thatS
again performed a molecular-orbitélund-Mulliken) calcu- o gyp(—dr2)« ex{ —AX(E/Eq)?], i.e., the orbital overlap de-
lation of the exchange energy, which we plot in Figleft  creases exponentially as a function of the applied electric

graph, circle symbols L . field Ej. Due to this high sensitivity, the electric field is an
It is crucial in experiments to distinguish between single-

and two-electron effects in the double dot, e.g., for potential 4o : 10 —
quantum gate applications, where two electrons are required. 44| , GaAs | 5} I InAs -
A single electron in a double dot exhibits a level splitting of = 14 B=ST | _g B=10T:
2t, wheret denotes the single-particle tunneling matrix ele- = pre—, ] 10F o

ment[cf. Eq. (15)], which has &B field dependence similar -15 R -15}

to the exchange coupling In order to allow a distinction 00 02 04 06 08 1.0 00 10 20 3.0
betweenJ andt, we have plotted(B) in the right graph of E,(mV/nm) E.(mV/nm)

Figs. 2 and 3. Since the one-particle tunneling matrix ele-

mentt is strictly positive, it is clearly distinguishable from  FIG. 8. MagnetizationM (in units of Bohr magnetonsas a
the exchange energyin systems with singlet-triplet cross- function of the perpendicular electric fielgi for vertically coupled
ing. Experimentally, the number of electrons in the double-quantum dots containing two electrons at a fixed magnetic field.
dot system can be tested via the field-dependent spectrufift® Pox-shaped symbols corresponcBto, and the circles td .

(Fig. 4 and magnetizatioliFigs. 6—8. Starting atE=0 with a triplet ground state fdB; (not so forB, ),
the electric field eventually causes a change of the ground state
V. ELECTRICAL SWITCHING back to the singlet, which leads again to a jump in the magnetiza-

OF THE SPIN INTERACTION tion for By . The left graph corresponds to a GaAs double (gat

rameters as in Fig.)2at T=100 mK andB=5 T, whereas the right
Coupled quantum dots can potentially be used as quantuigraph is for a smaller InAs double d@s in Fig. 3atT=4 K and
gates for quantum computatiéri,where the electronic spin B=10T.
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. between a spin singleS& 0) and triplet §=1) is also pos-
B=0 sible using optical methods: Measurement of the Faraday
rotation®* (caused by the precession of the magnetic mo-
ment around a magnetic figldeveals if the two-electron
system is in a singlet§=0) with no Faraday rotation or in
G a triplet (S=1) with finite Faraday rotation. Finally, it
should also be possible to obtain spin information via optical
= (far-infrared spectroscopy®
86 . . off We remark that if it is possible to measure the magneti-
0.00 0.05 0.10 0.15 0.20 zation of just one individual pair of coupled dots, then this is
E (mV/nm) equivalent to measuring a microscopic two spin-1/2 system,
i.e., 1/231/2=0® 1. Elsewhere we described how such in-
_FIG. 9. Switching of the §pin-spin coupling between dots of gjyidual singlet and triplet states in a double dot can be de-
different size by means of an in-plane electric figjd(B=0). The  tected(through their chargein transport measurements via
exchange coupling is switched “on” @&=0. When an in-planeé  aparonoy-Bohm oscillations in the cotunneling current
e_lectrlc fieldg is applied, the larger of tht_a two_dots is shifted to the and/or current correlatiori@=4
”%ht beX;'Evygerezas thz ;m_al;ler ?Ot 1S S_I_hk']ftedf by(+<hAX* ’ It is interesting to note that above scheme allows one to
where Ax.. =E/Eqap. andEq=fiw,/eag. Therefore, the me’an measure even a single spin 1/2, provided that, in addition,
distance between the electrons in the two dots growsdas -
_ \/EZ+_A2(EHTO)2, where A= (2, — a2_)/2a2, a2 . The ex- one can _perf_orm one tvvo-qu_blt gate opergt(_cnrr_espond-
ing to switching on the coupling for some finite timg and

change couplind, being exponentially sensitive to the interdot dis- . . ;
tance d’, thus decreases exponentially~S?~ exd —2AX(E;/ a subsequent single-qubit gate by means of applying a local

E,)?]. We have chosehw,=7 meV, d=1, ag,=1/2, andag_ Zeemar_1 interaction to one of the qubi(tSuch local Zeeman .
=1/4. For these parameters, we fiig=#w,/eas=0.56 mv/nm  interactions can be generated, e.g.,3 by using local magnetic
and A= (a2, —a? )I2a2, @ =6. The exchange couplind de- f|_elds or _by inhomogeneous factors39) E)pr|C|tIy, such a
creases exponentially on the scdig/2A=0.047 mV/nm for the single-spin measurement of the electron is performed as fol-
electric field. lows. We are given an arbitrary spin 1/2 stai¢ in quantum

dot 1. For simplicity, we assume thiat) is one of the basis

ideal “switch” for the exchange coupling which is (as-  States|a)=|1) or|a)=||); the generalization to a superpo-
ymptouca”w proportiona] '[082, and thus decreases expo- sition of the basis states is Straightforward. The Spin in quan-
nentially on the scal&,/2A. Note that if the dots have ex- tum dot 2 is prepared in the stdtg). The interaction J be-
actly the same size, theh=0 and the effect vanishes. We tween the spins in Ed1) is then switched on for a time,

can obtain an estimate dfas a function of by substituting ~ such thatf ;*J(t)dt= /4. By doing this, a “square-root-of-
d’ from Eq.(22) into the Heitler-London resufEq. (10)]. A swap” gate3*is performed for the two spingubits. In the
plot of J(E)) obtained in this way is shown in Fig. 9 for a case|a)=|1), nothing happens, i.e., the spins remain in the
specific choice of GaAs dots. Note that this procedure is nostate |1 1), whereas, if|@)=||), then we obtain the en-
exact, since it neglects the tilt of the orbitals with respect totangled state|( 7)+i|7))/+2, (up to a phase factor which
their connecting line. Exponential switching is highly desir-can be ignored Finally, we apply a local Zeeman term
able for_ guantum co_mputgtion, because in the “off” state OngBBS§1 acting parallel to the axis at quantum dot 1 dur-
the switch, fluctuations in the external control parametering the time intervalrg, such thatng(g,uBB)(t)dtz 2.

(e.g., the electric field)) or charge fluctuations cause only The resulting state i€gain up to unimportant phase factors
exponentially small fluctuations in the coupliny If this the triplet stgteHD in t%\e caSe wherknp):m €vhereas we
were not the case, the fluctuationsliould lead to uncon- . " state| (1)~ |1 1))/V2 in t,he casela)
trolled coupling between qubits and therefore to multiple- I1). In other \?vords such a procedure maps the triﬁigb

qubit errors. Such correlated errors cannot be corrected by '/ . ) s
known error-correction schemes, which are designed for un%to itself and the statg| T) into the singlefsimilarly, the

correlated erroré’ It seems likely that our proposed switch- same ga_te operat@ons map|) into\/ilself, yvhile 1) is
ing method can be realized experimentally, e.g., in verticagapped into the triplet| 1) +[11))/V2, again up to phase

columnar GaAs quantum dot8with side gates controlling ctorg. Finally, measuring the total magnetic moment of the

the lateral size and position of the dots, or in SAD's wheredoubPle dot system then reveals which of the two spin states

one can expect different dot sizes in any case. in dot 1,[1) or || ), was realized initially.

A% N 2d'>2d

Ax_

VI. SPIN MEASUREMENTS VII. DISCUSSION

The magnetizatiofFigs. 6—8, measured as an ensemble  In summary, we have calculated the spin exchange inter-
average over many pairs of coupled quantum dots in thermaiction J(B,E) for electrons confined in a pair of vertically
equilibrium, reveals whether the ground-state of the coupledeoupled quantum dots, and have compared the two-electron
dot system is a spin singlet or triplet. On the one hand, suckpectra(with level splittingJ) to the single-electron spectra
a magnetization could be detected by a superconductinith level spliting ). Comparing the one- and two-
quantum interference device or with cantilever-bd588 electron spectra enables us to distinguish one-electron filling
magnetometers. This type of spin measurement was alreadgom two-electron filling of the double dot in an experiment.
suggested earlier for laterally coupled dbfEhe distinction  For two-electron filling in the presence of a magnetic field, a
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ground-state crossing from a singlet to a triplet occurs at U, =N*G; +g*G; +29?S?G{+29?S*(G,+ Gj)
fields of about 5-10 T, depending on the strength of the N

confinement, the coupling, and the effectigefactor. The —-49S(G; —g°Gy)], (A3)
crossing can be reversed by applying a perpendicular electric
field. Y 420, 2 ~+ - 22 2
. . X=N[(1+g")SG7+99(G; +G,)+29°5°G,+29°G
As a model for the electron confinement in a quantum dot, [(1+g7)S°G1+g7(Gy +Gy)H2g 272073
we have chosen harmonic potentials. However, in some situ- _29(1+92)5(GZ +G;)1, (A4)

ations (especially self-assembled quantum ¢latsis more
accurate to use square-well confinement potentials in order o s 3.7 2 20
to model the band-gap offset between different materials. we =~ W==NT—9G1 —9°Gy —9(1+9%)(2S°G1+ G3)
have also performed calculations using square-well poten- +S(1+302)GF + S202(1+ g2 G A5
tials, which confirm the qualitative behavior of the results S 9)Gs g°(1+g7)Ga ], (A5
obtained using harmonic potentials. The results from usingN. h N= _

. . S N=1/\J/1-2Sg+g? =(1-J1-5%/S. We h
the square-well model potentials cannot be written in S'mplefnlttroduceé the o?e?rla% ir?tr:é]?als( S)/S. We have
algebraic expressions, and are given elsewfiere.

Furthermore, we have analyzed the possibilities of switch-

ing the spin-spin interactiod using external parameters. We Gi =(¢=a¢+alCle=ap=a), (AB)
find that in-plane magnetic field8; (perpendicular to the
interdot axi$ are better suited for tuning the exchange cou- Gl=S X ¢ 0+4/Clo=a@=a), (A7)

pling in a vertical double-dot structure than a fi@d (ap-
plied along the interdot axisMoreover, we have confirmed

o2
that the dependence of the exchange energy on a magnetic Go=S N¢xap=alClezapa), (A8)
field is stronger for weakly confined dots than for structures
with strong confinement. An even more efficient switching G3=(¢+a¢0:alClo—apza), (A9)
mechanism is found when a small quantum dot is coupled to
a large dot: In this case, the couplidgdepends exponen- +_ o
9 pligaep P G, =S 1<‘Pta‘Pta|C|‘Pta€Dia>- (A10)

tially on the in-plane electric fiel&, and thus provides an
ideal exte.rnal parameter for s_\/\_/lt_chmg the spin coupling %™\ote that the expressions fG‘l’, G,, andGj; are invariant
and off with exponential sensitivity. The experimental con-

under exchange op, and ¢ _,. In the case where the two

firmation of the electrical switching effect would be an im- " : a =" S :
portant step toward solid-state quantum computation wit ingle-particle Hamiltonians coincidenplying that the dots
ave the same sizewe find G} =G; (=G?, sinceC de-

guantum dots. . . " -
Another (very demandingkey experiment for quantum Pends only on the relative coordinandG, =G, , and the

computation in quantum dots is the measurement of singleeXPressions in EqA1)—(A5) for the matrix elements can
electron spins. Here we have presented a theoretical scherR€ Simplified accordingly. This simplification leads to the
for a single-spin measurement using coupled quantum dot§@me form of the Hund-Mulliken matrix elements which we
Obviously this scheme already requires some controlled inhave calculated for laterally coupled ddt.it is possible to
teraction between the spirigubits, and therefore the suc- choose the orbitalg .., to be real; e.g., if the magnetic field

cessful implementation of some switching mechanisms. IS in thez direction, thenG} =G, leading to a further sim-
plification of the matrix elementEqgs. (A1)—(A5)].
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integrals Eqs(A6)—(A10) and the single-particle matrix el-
ements in Eqs(13)—(17) as a function of the dimensionless
APPENDIX A: HUND-MULLIKEN MATRIX ELEMENTS interdot distancel=a/ag and the magnetic compression fac-

- [.2 1 R2/R2 i i i
Here we list the explicit expressions for the matrix ele-10rS @ (B)= yag. +B/Bp. The single-particle matrix ele-

ments defined in Eqg13)—(17) for two dots with arbitrary ments are given by
(and possibly different single-electron Hamiltonians .. ,

and (nonorthogonalsingle-electron orbitalg ., centered at hw, 3 S |a«
= i € — + —+ -
z=*a. The matrix elements are S 1602 1-<?| 9
_ N4 2/ ~+ - 2a2~0 2 2y2 1 a2, —a?_ o
V., =N*2g%(G] +G])+40°S’°G]+49°G,+ (1+9°)%G; iZ—Oc: - 0 (ga+——g )[1—erf(d)]}
—69%(G; +Gy)], (A1) o

$? (3 ) )
V_=N¥(1-g)%[ G5~ $G,), (A2) +1—32(Z(1+d) (o ta) ] (B1)
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1ag+—ag,
7 aa [1-erf(d)](as—a-)

_hw, S
2 1-¢

: (B2)

31d2
+4(1+d)

where S=[2Va,a_[(a;+a_)]exp(d?). The (two-
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G,;=G;=G; =G}

c % r? -
zﬁ(x)Z;\ aaOIBJO dI’I’KO( BT) |O(Mr2)

4

Xe—(1/4)(a+ao—/3)r2, (€3

o=ty ,Bfwd fd ' |<“_“0 2)
i i ' =hw,—Vaa r z r
particle Coulomb matrix elements can be expressed as in ©2 2 oF | . Z; 20 4

Egs.(A1)—(A5), where the integralfEgs. (A6)—(A10)] take
the forms

. 2c .
G =tw 2arcco$2ai—l), (B3)

T 1o (2a D)

c a, ta_
G,=Gl=hw,— - arcco$a, +a_—1),
T J1—(a;s+a_—1)>
(B4)
Gy=thw,Jucexp2ud?)[1—erf(dyV2x)], (B5)

. 2a. (ay+a_) )
G) =hw.e \/3a+—+a_e><p(,urd J[1—erf(dvVus)],

(B6)

where we have introduced=2a,a_/(a,+a_) and u.
=(a%+a,a_)/(3a.+a-). Equations(B5) and (B6) are

X @~ (Ua) (@t ag)r?~(112)B(z+2d)? (Co
Ga=hw,— /—aaoﬁedz(B/Bo)Z/afdrr dy—
o 0 - Aty
«lg ,B_aorz o (U4)(B+ ag)r®— (112)ay?
4
X cog2ydB/B,), (CH

C o0 o0
G4EG:{=G4=ﬁw2F\/aaoﬁf dyf deO(%(y2
ar — — 00

e~ (U4 (2a—ag)y®~ (12)B(z—d)?*+ %aozz cogydB/By).

+2%)

(C6)

Here K, denotes the zeroth-order Macdonald function, and
I is the zeroth-order modified Bessel function. The quanti-
ties a, B, andS have been defined earlier.

approximations which deviate from the exact result by

<12% in the rangel>0.7 andu<1, as we have checked

by numerical evaluation of the integrals.

APPENDIX C: HUND-MULLIKEN MATRIX ELEMENTS,
B|x

APPENDIX D: HEITLER-LONDON CALCULATIONS, B|x

In the following we evaluate the exchange enedgfor
two coupled quantum dots in a magnetic field applied per-
pendicularly to the interdot axisB{x) using the Heitler-
London approach. We first study the one-particle problem
for an anisotropic quantum dot with a magnetic field applied

The Hund-Mulliken calculation for a system of two equal Perpendicularly to the symmetry axis of the dot,

dots with a magnetic field applied in thixedirection(Sec. I\V)
is formally identical to the one with a field in tredirection
presented in Sec. Ill. For equal dots we s&f, =ag_
=aqy, a,=a_=a, ande, =e_=e. The one-particle ma-
trix elements are then

hw,
2

€= ag+a+ B+

+ s 3<1+d2)
16d°p2 1-s24\B

SZ _ B 2
P, B
1-8% «a Bo

_hwz S (31 B—a B\?
= el g Pl | 2

: (CD

2 m 2
+ —;Z [ad(x®+y?)+7%],
(D1)

where g is the ellipticity andA(r) =B(0,—z,y)/2. We can
separaten®(r) =h2(x) +hJ,(y,z) into a B-independent har-
monic oscillatorh®(x) = — (A2/2m) 92+ (Mw?2/2) a?x?, and a
B-dependent part

)= e P SAM)
2m c

0 2, .2 m,w” 202 22
hyz(yrz):py+pz_wLLx+ 2 (CV y +B z )1
(D2)
with  a=as+ (o /0)?=a5+(B/By)?, and g

=1+ (o /w,)*=1+(B/By)°. We have not solved Eq.
(D2) exactly; instead we have used a variational approach,
minimizing the single-particle energ%=<¢|h32| N )

as a function of two variational parameters, in order to find a

Since we consider two equal dots, the matrix elements of thgood approximate ground-state wave function. A reasonable
Coulomb Hamiltonian are formally equal to those given intrial wave functiony should reproduce the anisotropy be-

Ref. 7, where~; has to be replaced bg;, defined by

tweeny and z in the Hamiltonian. This requirement is ful-
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filled, e.g., by a Gaussiam (v, v,,y,z) =Ne~ ny* =72’ o
by mixing Fock-Darwin stategyy, with angular momenta
=0, 2, and —2 and radial quantum numben=0,

1/12(52 ’ 5—2 ,y,Z) =-/V[ '/fo,o(yuz) + 2| :12§| (v[/O,I(yIZ)]! where
5_,,8,, andy,,y, are variational parameters andand \/
are normalization constants. Calculatirg(vy,,y,) and
€o(8_,,05), and subsequently minimizing with respect to
the variational parameters, we find that
Y[ Mw,al (2h),mw,B/(24),y,z], with the normalization
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Shifting the single-particle orbitals to (0;0a) in the pres-
ence of a magnetic field, we obtain E80), where the phase
factor involving the magnetic lengtly=v7%c/eB is due to
the gauge transformationA.,=B(0,—[z+a],y)/2—A
=B(0,—2z,y)/2. Having found an approximate solution for
the one-particle problem in a dot centeredzat+a or z
—a, we show that the exchange energy is given by Eq.
(21) for a system with two dots of equal size, whelg
denotes the result from E¢Q). In the derivation of the for-

constant\'= (mw, /7 ) Y% «B) " is the best approximate mal expression for the exchange energ,‘(B,d)_ given in
ground-state wave function in our variational space. We havgg- (9), we have used thapi% was an exact eigenstate of
also shown that including the Fock-Darwin states with anguh:,, and therefore (¢-,|h% [¢-a2)=(@-ah%|@a),

lar momentum quantum numbedrs =1 in ¢, does not lead
to a lower minimum of the enerng|h‘y’z| o) (o] ). The
full one-particle wave function is then given by

3/4
_ 2 2 2
(aoal[))) 1/46 Mw,(agX*+ ay“+ Bz )/Zh.

(D3)

Th

where S=(¢,|¢_,) denotes the overlap of the shifted
orbitals. The approximate solutidieq. (D3)] for an aniso-
tropic dot in the presence of an in-plane magnetic field is not
an exact eigenstate ¢i°. Using the corrected off-diagonal
matrix  element (¢+4h%,|¢-a)=Fho(agta+B)/2
+d?(B/Bg)%(B— @)/ a], the result for the exchange energy
[Eqg. (21)] can easily be derived.
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